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Abstract— Nanoscale computing systems show great potential but 
at the same time introduce new challenges not encountered in the 
world of conventional CMOS designs and manufacturing.   For 
example, these systems need to work around layout and doping 
constraints resulting from unconventional bottom-up self-
assembly, and need to cope with high manufacturing defect rates 
and transient faults. Unfortunately, most conventional defect-
tolerance techniques are not directly applicable in nanoscale 
systems because they have been designed for very small defect 
rates. In this paper, we explore built-in defect-tolerance 
techniques on 2-D semiconductor nanowire (NW) arrays to make 
designs self-healing. Our approach combines circuit and system-
level techniques and it does not require defect map extraction, 
reconfigurable devices, or addressing each cross-point similar to 
reconfigurable approaches. We show that a defect-tolerant 
simple processor based on our approach would be still around 3X 
denser than an 18-nm CMOS version with equivalent 
functionality; a yield greater than 30% is achieved despite a 
fabric with 14% defective FETs. 
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I. INTRODUCTION 
There are many novel devices under development such as 

based on unique molecular structures, carbon nanotubes (CNT), 
and semiconductor nanowires, and arrays of crossed NWs. 
Researchers have already built FETs and diodes out of NWs 
[7]. Complementary depletion-mode FETs in the same material 
have been demonstrated with Germanium [6] and Silicon [1]. 
Considerable progress has been made on assembling arrays 
with such devices using either unconventional lithographic 
techniques or bottom-up self-assembly [8]. This rapid progress 
is driving researchers to explore possible new nanoscale 
architectures. Examples of proposed architectures include [2], 
[5], [9], [15], [16]. 

This paper focuses on defect-tolerance techniques on 2-D 
nanowire array based fabrics and explores a defect-tolerant 
nanoscale processor. It is extending ideas presented in [15] and 
adds system-level techniques in CMOS.  

Most nanoscale defect-tolerance techniques proposed are 
based on reconfiguration [3], [5], [9]. By contrast, our solution 
for defect-tolerance is based primarily on built-in circuit-level 
redundancy in a cascaded AND-OR logic family [12], [15]. 
Additionally, we combine these circuit-level techniques with 
system-level CMOS voting using TMR [10] to further improve 
the yield.  

We base our work on Nanoscale Application-Specific IC 
(NASIC) fabrics [13], [16]. To explore the benefits of the 
proposed techniques, we develop and evaluate a defect-tolerant 
Wire Streaming Processor [14]. WISP-0 is a simple but 
complete stream processor that exercises many different 
NASIC circuit styles and optimizations. 

Compared with reconfiguration-based approaches, our self-
healing techniques eliminate the need for defect map extraction, 
do not require reconfigurable devices, and dispense with the 
complex nano-micro interfacing/decoder required to address 
each crosspoint in a reconfigurable fabric. Our preliminary 
results show that a WISP-0 processor with defect tolerance has 
a 3X density advantage compared to equivalent 18-nm CMOS 
implementation. The CMOS version is synthesized with 
modern CAD tools and scaled to 18-nm. The resulting yield for 
WISP-0 is 30% even in the presence of 14% defective 
transistors.    

The rest of this paper is organized as follows: Section 2 
provides a brief overview of NASICs and the architecture of 
the WISP-0 processor. Defect-tolerance techniques are 
introduced and discussed in Section 3. Results are presented in 
Section 4. Section 5 concludes the paper. 

II. NASIC FABRICS AND WISP-0 PROCESSORS 
NASIC designs use FETs on 2-D semiconductor NW arrays 

to implement logic functions. Various optimizations are applied 
to work around layout and manufacturing constraints [14], [16]. 
While based on 2-level AND-OR logic style, NASIC designs 
are optimized according to specific applications to achieve high 
density. Figure 1 demonstrates the design of a 1-bit full adder 
in dynamic style. By using dynamic circuits and pipelining on 
the wires, NASICs eliminate the need for explicit flip-flops and 
therefore can improve the density considerably [13]. 

WISP-0 is a stream processor that implements a 5-stage 
pipelined streaming architecture. Each stage is implemented in 
its own tile. NWs are used to provide communication between 
adjacent nanotiles. Each nanotile is surrounded by microwires 
(MWs) which carry ground, power supply voltage, and some 
control signals. Additionally, in order to preserve the density 
advantages of nanodevices, data is streamed through with 
minimal control/feedback paths. With the help of dynamic 
Nano-latches [13], intermediate values during processing are 
stored on the wire without requiring explicit latching. Support 
is assumed in the compiler to avoid hazards.  



Figure 2 shows the layout. A nanotile is shown as a box 
surrounded by dashed lines. More details about the various 
circuits used can be found in [14]. In this paper, we use WISP-
0 to evaluate the efficiency of our defect-tolerance techniques. 

 

Figure 1  Dynamic NASIC implementation of a 1-bit full 
adder. The thicker wires represent microwires (MWs), the 
thin ones are NWs. The black and white dots, at NW 
crosspoints, represent p-FETs and n-FETs respectively. 

 

 

Figure 2  Floorplan of the WISP-0 Processor. 

III. NASIC DEFECT-TOLERANCE APPROACH 
Although the defect rates of nanoscale fabrics will likely 

improve with time, defect levels of nanodevices are expected to 
remain in the few percent range [7]. Larger-scale systems 
would likely have greater than 5% defects. We are not 
considering defect rates greater than 15% as we believe such 
fabrics would unlikely become practical.   

A. Defect Model Assumed 
There are two main types of defects while building 

nanoscale systems: NWs may be broken and the FETs at the 
NW crosspoints can be defective. FETs may be stuck-short 
(channel is always open) or stuck-open (channel is always off). 

A stuck-open transistor can be treated as a broken NW; a stuck-
short transistor means no active transistor at the crosspoint.  

B. Possibles Directions for Defect Tolerance 
Basically there are two main approaches that can be 

followed. First, if reconfigurable devices are available, we 
could devise techniques to work around defects in a fabric. 
Reconfigurable solutions need to address several challenges. 
One key challenge is accessing crosspoints in the fabric for the 
purpose of reconfiguration. That requires a special interface 
between the micro and the nanodevices. Such an interface 
involves a large number of extra MWs - a high area overhead 
and a major manufacturing challenge due to the required 
alignment between the NWs and the MWs. No proposals with 
exception of perhaps CMOL [9] address this issue in a practical 
way as yet. Additional fundamental issues include extracting 
defect maps, reconfiguration algorithms, and the availability of 
reconfigurable devices. 

Alternatively, as proposed here, we can make the circuits 
and the architectures self-healing by adding redundancy and by 
modifying a design such that it becomes more tolerant to 
defects and faults. We classify our self-healing approach into 
four techniques: circuit-level built-in redundancy, NW 
interleaving, weak pull-up/down NWs, and system-level Triple 
Modular Redundancy (TMR) [10]. 

C. Circuit-Level Built-In Redundancy  
Figure 3 shows a simple example of a NASIC circuit 

implementing an AND-OR logic function with built-in 
redundancy. To make the masking mechanism work, we 
modify the dynamic circuit style reported in our prior work 
[13]. We use different schemes for horizontal and vertical NWs. 
As shown in the figure, horizontal NWs are predischarged to 
“0” and then evaluated. For vertical NWs, they are instead 
precharged to “1” and then evaluated. The circuit implements 
the logic function o = ab+c; a’ is the redundant copy of a and 
so on.   

A NASIC design is effectively a connected chain of AND-
OR logic planes. Our objective is to mask defects either in the 
logic stage where they occur or following ones. For example, a 
break on a horizontal NW in the AND plane (see for example 
position “A” in the figure) causes the signal on the NW to be 
“0”. This is because the NW is disconnected from Vdd. The 
faulty “0” signal can, however, be masked by the following 
logic OR plane if the corresponding duplicated/redundant NW 
is not defective.  

A NW break at position “B” can be masked by the AND 
plane in the next stage. Similar masking can be achieved for 
breaks on vertical NWs. Stuck-open FETs can be modeled with 
broken nanowires; the defect tolerance would work as 
described above. For stuck-short FETs, the situation is 
relatively simpler as each FET has its redundant copy: if one of 
the two transistors is stuck-short (no active transistor at 
crosspoint), the circuit still works. 

D. Improving Defect-Tolerance by Interleaving NWs 
While the previous technique can mask many types of 

defects, faults at certain positions are difficult to mask. For 



example, if there is a break at position “C” in Figure 3, the 
bottom horizontal NW is disconnected from ground. The signal 
on this NW will be set to logic “1”. Because of OR logic on the 
vertical NWs, the two vertical NWs would be always set to 
logic “1”. 

 

Figure 3  Simple NASIC circuit with built-in redundancy. 

Clearly, if the NW break is in a specific region, it cannot be 
masked easily in subsequent AND or OR planes. We call these 
regions hard-to-mask (shown as the thicker segments in Figure 
3). 
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Figure 4 Interleaving NWs to reduce hard-to-mask regions. 
The right circuit has interleaved vertical NWs. 

By carefully interleaving NWs, however, we can reduce 
hard-to-mask regions to minimum. Assuming we have two 
outputs (o1 and o2) in a nanotile, Figure 4 illustrates how 
interleaving shrinks these regions. Note that the order of NWs 
is changed from o1, o1’, o2, o2’ to o1, o2, o1’, o2’. (The input 
NWs and some transistors are not shown in the figure for better 
clarity.) Interleaving is also helpful in masking clustered 
defects because duplicated NWs are set apart. 

E. Adding Weak Pull-UP/Down NWs 
Even after built-in redundancy and careful interleaving, 

there are still hard-to-mask regions remaining: see for example 
the regions in the right circuit in Figure 4. A possible solution 
to mitigate this problem is to insert weak pull-down vertical 
NWs between the AND and OR planes. The idea is to pull 
down (or up depending on logic plane) floating inputs, due to 
broken NWs, that would cause logic faults: e.g., a floating “1” 
input before an OR plane would make the OR logic always 
compute “1”. Modifying floating signals to a preferred logic 
level would allow masking in following logic planes. 

A weak pull-down NW does not change correct operations 
if there are no defects, but introduces a performance tradeoff 
when there are defects by slowing the circuit down somewhat. 
Additionally it adds leakage power. At each crosspoint between 
a vertical pull-down NW and horizontal NWs there is a 
resistance created. This resistance has to be made larger than 
the switch-on resistance (estimated to be smaller than 10MΩ 
according to [10]) of a depletion-mode FET and smaller than 
the switch-off resistance (over 100Ω). We are currently 
building a detailed Spice simulator that would enable us to 
explore the performance tradeoffs due to these added NWs.  To 
ease manufacturing we could also use MWs instead of the 
NWs implementing weak pull-up/down wires.  

F. Adding CMOS TMR  
Voting based techniques such as TMR have been used 

extensively before. To be efficient, voting requires that the 
probability of a defect in the voting circuit is much smaller than 
in the design it is applied to. This is clearly the case in 
conventional technology. TMR is not applicable as is in 
NASIC designs because at 10-15% fabric defect rates the TMR 
circuits themselves would be likely defective.  

Nevertheless, in pipelined processor designs one could add 
TMR at certain points in a design in CMOS, without affecting 
throughput significantly.    If each nanotile has two extra 
identical replicas, we could vote either at each stage or on the 
final outputs. Voting helps where the other techniques leave 
faulty outputs. In the following section, we show results for 
each of the techniques presented applied to the WISP-0 
processor design.   

IV. RESULTS 
By simulating WISP-0 with randomly generated defects 

and comparing the outputs with a defect-free design, we 
evaluate the efficiency of our techniques for tolerating 
defective FETs and broken NWs.  We develop an equivalent 
CMOS WISP-0 version in Verilog and compare the area of the 
scaled CMOS WISP-0 with the nanoscale WISP-0 after defect 
tolerance techniques are included.  

A. Defect Tolerance and Yield Results 
An assumption we make in the simulation is that defects are 

evenly distributed along NWs and among transistors. We do 
not consider clustered defects (which are mitigated somewhat 
by our NW interleaving but exploring that is beyond the scope 
of this paper).  

Figure 5 shows the yield of WISP-0 assuming some 
defective transistors and Figure 6 shows the yield of WISP-0 
with broken NWs. There are 8 curves in each figure, each of 
them representing one configuration of WISP-0 with a 
combination of defect-tolerance techniques applied. The 
figures show that the defect-tolerance techniques considerably 
improve yield. Even if the defect rate of FETs reaches 14%, the 
yield still remains greater than 30%. If the defect rate of broken 
NWs is 10%, the yield is over 19%. 
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Figure 5  Yield with different defect-tolerance techniques 
and assuming various rates of defective FETs. Notation: 
Red shows WISP-0 with built-in redundancy; Inter means 
interleaving of NWs; Pull means applying weak pull-
up/down NWs; and TMR refers to CMOS TMR added. 
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Figure 6  The yield achieved with different techniques 
when considering broken NWs. 

Interleaving and weak pull-up/down NWs (or MWs) do not 
improve the yield of WISP-0 with defective transistors 
considerably, but significantly improve it on fabrics with 
broken NWs.  

B. Comparison with Equivalent CMOS Processor 
Figure 7 shows the normalized density of WISP-0 with 

different defect-tolerance techniques. The baseline is the 
equivalent CMOS design of WISP-0 that we have implemented 
in Verilog-HDL and synthesized/scaled to various process 
technology nodes. Roughly speaking, our self-healing 
techniques increase the area of the original WISP-0 by around 
3X. System-level TMR related copies increase the area by 
another 3X. If a 3-D layout of CMOS circuits and nanoarrays 
described in [11] turns out to be possible, the voting circuits 
can be overlapped with the nanoarray.  The density of WISP-0 
with redundancy (without TMR) is in fact higher than the 
density without redundancy but with a micro-nano decoder 
required in a reconfigurable solution.  Compared with CMOS 
implementations, the nanoscale WISP-0 preserves its density 
advantage. Even at 18-nm CMOS, available in 12 years 
according to ITRS 2005, the self-healing WISP-0 design 

combined with system-level TMR would be still around 3X 
denser than the equivalent CMOS version.  
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Figure 7 Density comparison NASIC and CMOS WISP-0. 
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