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Abstract

Recent research progress on nanoscale devices such as
based on nanowire (NW) crossbars shows great promise to-
wards building nanoscale computing systems. This paper
is part of our ongoing effort to develop and evaluate high-
density, defect-tolerant architectures on such fabrics. Our
designs are based on Nanoscale Application Specific ICs
(NASICs), and are primarily targeted towards microproces-
sor datapaths. In this paper we propose a new dynamic
circuit scheme that enables efficient pipelining and tempo-
rary data storage with a 2× higher throughput than in pre-
viously published designs. In addition, we explore built-
in defect-tolerance techniques in conjunction with system-
level CMOS voting and evaluate their effectiveness to mask
both defective transistors and broken NWs, as well as com-
bination defects. Furthermore, we introduce a simple defect
model for clustered defects. We evaluate the effectiveness of
our defect-tolerant designs for both uniformly distributed as
well as clustered defects.

1 Introduction

The general nanoscale fabric architecture we use in this
paper is called Nanoscale Application-Specific IC (NA-
SIC) [11, 7, 8]. NASICs are based on 2-D nanowire cross-
bars and use FETs as active switching elements. Our pro-
cessor design called the Wire Streaming Processor (WISP-
0) [9] is a simple but complete stream processor that ex-
ercises many different NASIC circuit styles and optimiza-
tions. WISP-0 is based on dynamic circuits for pipelining
and temporary data storage. In this paper, we propose a new
dynamic scheme that improves the throughput of a WISP-0
design by 2× with small area overhead.

As discussed by several researchers, defect tolerance is
expected to be a key issue in nanoscale designs. Most

nanoscale defect-tolerance techniques proposed by other re-
searchers are based on reconfiguration [1, 3, 5] around de-
fects. By contrast, our solution for NASICs is based on
built-in redundant NWs and circuit-level redundancy in a
cascaded AND-OR logic design [6, 10]. Our objective is to
make NASIC designs self-healing (i.e., functional) even in
the presence of defects.

In addition to built-in redundancy, fabric and circuit-
level optimizations are applied to improve the effectiveness
of fault masking. These optimizations include interleaving
and weak pull-up/down wires [10]. We found interleaving
of (redundant) NWs to be effective against clustered faults.
The pull-up/down nano (or micro) wires are especially ef-
fective against faults caused by broken NWs. We also com-
bine these low-level techniques with system-level CMOS
voting to further improve the yield. Initial exploration of
this approach was shown in an invited paper in [8].

This paper provides a more extensive evaluation: we
extend the evaluation of our defect-tolerance techniques
to cases with both defective transistors and broken NWs.
Moreover, we assume both uniformly distributed and clus-
tered defects. We found that the yield of WISP-0 remains
above 30% even in the presence of 5% defective transis-
tors in conjunction with 5% broken NWs. As expected,
the yield of WISP-0 without defect-tolerance techniques
drops quickly to 0 with either types of defects. This paper
also introduces a simple defect model for clustered defects.
Our preliminary results show that our defect-tolerance tech-
niques can mask clustered defects very well.

Compared with reconfiguration-based approaches, our
self-healing techniques eliminate the need for defect map
extraction, do not require availability of reconfigurable de-
vices, and dispense with the complex nano-micro interfac-
ing required to address each crosspoint in a reconfigurable
fabric. Despite the added redundancy, the WISP-0 design
with a 10-nm NW pitch would still have a 3× density ad-
vantage compared to an equivalent 18-nm CMOS version.



The rest of this paper is organized as follows: Section 2
provides a brief overview of NASIC and shows an exam-
ple design of a WISP-0 processor. The new dynamic cir-
cuit style is introduced in Section 3. Section 4 provides a
discussion of our combined fabric and system-level defect-
tolerance techniques. The simulation results in Section 5
show the effectiveness of our defect-tolerance techniques.
Section 6 concludes the paper.

2 Overview of NASIC Designs and WISP-0
Processor

NASIC designs use FETs on 2-D semiconductor NWs
to implement logic functions and various optimizations to
work around layout, doping, and manufacturing constraints
as well as defects [11, 9]. While still based on 2-level AND-
OR logic style, our designs are optimized according to spe-
cific applications to achieve higher density and defect mask-
ing. Figure 1 demonstrates the design of a 1-bit full adder in
a dynamic style. Each nanotile is surrounded by microwires
(MWs), which carry Vdd, Gnd and some control signals. In
multi-tile NASIC designs, NWs are often used to provide
communication between adjacent nanotiles.

Figure 1. Dynamic implementations of a 1-bit
full adder. The thicker wires represent mi-
crowires (MWs) and the thin ones are NWs.
The doping type of the wires (p-type or n-
type) along source-drain of a FET transistor
determines the type of the transistor. The
black and white dots, at the crosspoints of
NWs, represent p-FETs and n-FETs respec-
tively.

WISP-0 is a stream processor that implements a 5-stage
microprocessor pipeline architecture including fetch, de-
code, register file, execute and write back stages. WISP-
0 consists of five nanotiles. Figure 2 shows the layout
of WISP-0. A nanotile is shown as a box surrounded

by dashed lines in the figure. In WISP designs, in order
to preserve the density advantages of nanodevices, data is
streamed through the fabric with minimal control/feedback
paths. By using dynamic circuits and pipelining on the
wires, we eliminate the need for explicit flip-flops and
therefore improve the density considerably. In this paper,
WISP-0 is used for evaluating the efficiency of our defect-
tolerance techniques.

Figure 2. The floorplan of WISP-0.

3 Dynamic Circuits for NASICs

NASIC circuits are based on dynamic circuitry rather
than static ratioed logic. In this paper, we propose a new
dynamic circuit style that is an improvement compared to
our previous work. Similarly, compared with [2], our new
dynamic circuit requires two sets of precharge/predischarge
and evaluate signals (i.e. ndis1, neva1, ppre1, peva1 and
ndis2, neva2, ppre2, peva2 in Figure 1), in each dimension.
To ease manufacturing, every nanotile is provided two sets
of control NWs for selection. The area overhead is mini-
mal requiring just two extra NWs in each dimension on the
fabric. Two successive logic stages must select different
control schemes: this allows cascaded circuits to function
correctly.

Figure 3 compares our dynamic circuit scheme with the
one in [2]. The circuit and waveform in [2] are shown in the
left-side. In addition to the normal precharge/predischarge
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Figure 3. Two different dynamic circuit de-
signs and their waveforms.

and evaluate phases, an extra hold phase is used for correct
cascading. The right-side shows the new circuit and cor-
responding waveform. The key difference between these
two designs is that in the new circuit, the evaluate phase
is in parallel with the precharge/predischarge phase of the
next stage. In our previous design and the design on the left
in the figure, all operations are sequential. The waveforms
indicate that the throughput of the new design is doubled
compared with the circuit on the left-side.

4 Defect Tolerance Strategy

Although the manufacturing process is improving
rapidly, the defect level of nanodevices is still close to a few
percent range [4]. This fact makes defect tolerance a critical
design aspect in any nanoscale system. The high rate also
means that the problem will likely require a solution that
involves all (or many) system layers to be effective.

Basically there are two main types of defects while build-
ing nanoscale systems: NWs may be broken and the transis-
tors at the crosspoints may be stuck-short (channel is always
open) or stuck-open (channel is always off). A stuck-open
transistor can be treated as a broken NW; a stuck-short tran-
sistor means that there is no active transistor at that cross-
point.

If reconfigurable devices would be available, we could
possibly devise techniques to work around defects. Recon-
figurable proposals face many challenges however. One key
challenge in such solutions is accessing crosspoints in the
fabric: this is required for reconfiguration. That requires
a special interface between the micro and the nanodevices

capable of addressing every crosspoint. Such an interface
involves a large number of MWs, which is not only a high
area overhead but it is also very difficult to build due to the
required alignment between the fabric-related nano and the
interfacing-related microwires.

Alternatively, as proposed by this and our previous
works, we can make the circuits and the architectures self-
healing such that defects could be masked automatically
without reconfiguration.

By replicating horizontal and vertical NWs and devices
at crosspoints, we can devise schemes to tolerate a consid-
erable fraction of transistor and NW defects. The faulty
signals caused by such defects could be masked by cor-
rectly functioning replicas that are merged at each AND and
OR stage in a design. Properties of AND-OR logic chains
(like faulty 0s can be masked in OR logic and 1s in AND
logic stages), can be used to mask faults. Note that either
in the stage when they occur or in subsequent logic stages
are these faults masked. Of course if both redundant signals
are faulty, the correct signal could not be recovered. We
found that by carefully interleaving NWs, we can minimize
the regions on the fabric that are otherwise difficult to mask.
Another technique is to insert a weak pull-up/down NW or
microwire(s) between AND and OR planes or between tiles.
Such weak pull wires could be implemented with MWs sur-
rounding the tiles for better manufacturability. Weak pull
resistances can be provided by a technique similar to micro-
nano contact resistances. These wires are used to help mask
certain defective floating NWs by pulling them to logic val-
ues that can be tolerated by AND or OR logic planes de-
pending on their position. In addition to these low-level
techniques, we also evaluate adding CMOS voting of inter-
connecting NWs across tiles or simply voting on the end
results. Additional details on these defect-tolerance tech-
niques could be found in [10, 8].

In our previous work we only considered defective tran-
sistors and broken NWs separately. However these two
types of defects can likely happen simultaneously. In this
paper, we include cases of both NW and transistor defects.

Moreover, previously we assumed all defects to be uni-
formly distributed. However, defect clusters will be likely
common in grid-based architectures. Due to manufacturing
limitations, however, a group of adjacent crosspoints or a
group of adjacent wires could be defective at the same time.
If clustered defects make two redundant signals faulty, these
faults can not be masked. However, if any two redundant
signals are set far-enough apart, clustered defects will un-
likely make them both faulty simultaneously.

Figure 4 illustrates how NW interleaving helps to toler-
ate clustered defects. Assuming a defect cluster causes 4
transistors in the circle in Figure 4 to be stuck-open, in the
top circuit, both o1 and o′1 are set to “1” because they are
disconnected from Gnd. These faulty signals can not be
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Figure 4. Interleaving helps to tolerate clus-
tered defects. The transistors in the circle are
stuck-open.

masked in such case. On the contrary, in the bottom circuit,
although o1 and o2 are set to “1”, they both have correct
replicas (o′1, o′2). In the AND plane of the next logic stage,
they will be masked by their corresponding replicas. A sim-
ilar analysis can be done for clustered broken NWs.

In the next section, we will show the impact of differ-
ent types of defects and the effectiveness of our defect-
tolerance techniques to mask these defects.

5 Evaluation

We apply the proposed self-healing techniques to WISP-
0, including built-in signal redundancy (with signal merging
at subsequent AND and OR planes), interleaving of NWs
and weak pull-up/down wires. By simulating WISP-0 with
randomly generated defects and comparing the outputs with
a defect-free design, we evaluate the efficiency of our tech-
niques on tolerating both defective transistors and broken
NWs.

We first assume that defects are evenly distributed along

NWs and among transistors.
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Figure 5. The yield achieved with different
techniques when considering defective tran-
sistors. w/o Red means WISP-0 without built-
in redundancy. TMR means WISP-0 with TMR
voting at each stage. Red means WISP-0
with redundancy. Inter means interleaving of
NWs. Pull means applying weak pull-up/down
wires. TMR means Triple Modular Redun-
dancy at system level and voting at each
stage. FinalTMR means Triple Modular Re-
dundancy at system level and voting on the
final outputs. “+” means the combination
of different techniques (e.g. Red+Inter+Pull
means WISP-0 with built-in redundancy, in-
terleaving and weak pull-up/down wires).

Figure 5 shows the yield of WISP-0 assuming some de-
fective transistors and Figure 6 shows the yield of WISP-0
with broken NWs. 7 curves are shown in every figure, each
of them representing one configuration of WISP-0.

From Figure 5 and 6, we can see that our built-in redun-
dancy works very well and the combined techniques im-
prove yield considerably. With the exception of compensat-
ing faults, without defect tolerance, the presence of defects
causes incorrect results. For WISP-0 with self-healing tech-
niques applied, however, even if the defect rate of transistors
reaches 14%, the yield still remains over 30%. If the defect
rate of broken NWs is 10%, the yield is over 19%. Notice
that interleaving and weak pull-up/down wires do not im-
prove the yield of WISP-0 (Curves “Red”, “Red+Inter” and
“Red+Inter+Pull” are almost identical in Figure 5). How-
ever, they significantly improve the yield of WISP-0 with
broken NWs.

We also find from our simulation that the CMOS TMR
technique alone doesn’t work when the defect rate of tran-
sistors or NWs are over 5%. This is because in these situa-
tions the possibility of correct signal on several NWs at the
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Figure 6. The yield achieved with different
techniques when considering broken NWs.

same time is very low. Assuming that the possibility of cor-
rect value on a single NW is α, a simple analysis indicates
that the possibility of correct voting is α2(3− 2α). This as-
sumes the voting circuits are defect free because we imple-
ment the voting circuits in conventional CMOS. The defect
rate of conventional CMOS devices is far less than nanode-
vices. When α is close to either 1 (defect free, best case)
or 50% (worst case), the voting has no benefit. This ex-
plains why system-level TMR must be combined with other
circuit and fabric-level techniques when the defect rate is
very high. The simulation results shown in Figure 5 and 6
are consistent with this analysis (see the curves “TMR” and
“Red+Inter+Pull+TMR”).

Defective Transistors + 5% Broken NWs
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Figure 7. The yield achieved with different
techniques when considering various defect
rates of transistors and 5% broken NWs.

We extend our simulation to the cases with both defec-
tive transistors and broken NWs. We first explore the yield
for various transistor defect rates in conjunction with a con-
stant 5% defect rate for NWs. Similarly, we also show the

Broken NWs + 5% Defective Transistors
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Figure 8. The yield achieved with different
techniques when considering various defect
rates of NWs and 5% defective transistors.

yield for various NW defect rates when assuming a con-
stant 5% defect rate for transistors. Our simulation results
are shown in Figure 7 and Figure 8 respectively. We can
see that our defect-tolerance techniques improve the yield
of WISP-0 considerably even for fabrics with mixed de-
fect types. There are some yield degradations compared to
the cases with only one type of defect. However, the yield
remains in reasonable range: e.g., even with 5% defective
transistors and 5% broken NWs the yield of WISP-0 (with
all self-healing techniques applied) remains over 30%.
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Figure 9. A simple clustered defect model.
The value at a crosspoint or on a NW indi-
cates the probability that this crosspoint or
this NW is defective.

To evaluate the impact of clustered defects, we first in-
troduce a model for clustered defects. In this paper, we as-
sume a simple clustered defect model for NASICs. First,
we set a probability for defect clusters (called cluster rate).
Then, we determine randomly if a crosspoint belongs to a
defect cluster, or not, based on the cluster rate. If yes, the
crosspoints around this point would have larger probability
to be defective than in uniformly distributed defect mod-
els. Intuitively, the probability of a crosspoint being defec-



tive decreases if the distance to the center of the cluster it
belongs to increases. Figure 9 shows the defect distribu-
tion for clustered defective transistors and clustered broken
NWs, where a is a value between 0 and 1. The other param-
eter in this model is n representing the maximum distance
between outmost transistors or NWs in this cluster and the
cluster center. n effectively determines the size of clusters.

Clustered Transistor Defects
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Figure 10. The yield achieved with different
techniques when considering various rates
for clustered transistor defects.

Clustered Broken NWs
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Figure 11. The yield achieved with different
techniques when considering various rates
for clustered NW defects.

We evaluate the impact of clustered defects based on the
defect model discussed above. Figure 10 shows the yield
of WISP-0 assuming clustered transistor defects and Fig-
ure 11 shows the yield of WISP-0 with clustered broken
NWs. We assume the following parameters for clustered
defect model: a = 0.2, n = 2. The results indicate that
our defect-tolerance techniques can also improve the yield
of WISP-0 with clustered defects. The yield of WISP-0 re-
mains around 20% when the cluster rate of transistors is 5%.

Note that each defect cluster may have multiple defects.
Comparing Figure 5 and Figure 10, we find that although

interleaving does not help against evenly distributed tran-
sistor defects, it helps against clustered transistor defects
(curve “Red” and “Red+Inter”). This is because interleav-
ing set replicated signals far apart such that clustered tran-
sistor defects can hardly impact them simultaneously.

Another important aspect of nanoscale systems is their
density. Built-in redundancy clearly impacts it. Compared
with deep sub-micron CMOS technology, however, our
self-healing WISP-0 has still great density advantage even
with added defect-tolerance. Even at 18-nm CMOS, avail-
able in 12 years according to the ITRS 2005 roadmap, our
self-healing WISP-0 design combined with system-level
TMR would still be around 3× denser than the equivalent
WISP-0 in 18-nm CMOS [10].

6 Conclusion

A novel defect-tolerant nanoscale NASIC design is dis-
cussed. First, a new dynamic circuit style is introduced
to improve the performance of NASICs. After that, var-
ious defect-tolerance techniques are evaluated to improve
the yield of a WISP-0 design built with NASICs. Both uni-
formly distributed and clustered defects are addressed. A
fairly generic fault model is assumed including mixed de-
fects with both broken NWs and defective transistors.
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