
Circuit Design Steps for Nano-Crossbar Arrays: Area-Delay-
Power Optimization with Fault Tolerance

Journal: Transactions on Nanotechnology

Manuscript ID TNANO-00011-2019

Manuscript Type: NANOARCH2018ATHENS

Date Submitted by the
Author: 02-Jan-2019

Complete List of Authors: Morgul, Muhammed Ceylan; Istanbul Teknik Universitesi Elektrik-
Elektronik Fakultesi, Electronic and Communication Engineering
Frontini, Luca; Universita degli Studi di Milano
Tunali, Onur; Istanbul Teknik Universitesi Elektrik-Elektronik Fakultesi,
Electronic and Communication Engineering
Vatajelu, Ioana; Institut Polytechnique de Grenoble, EE and CS
Ciriani, Valentina; Universita degli Studi di Milano
anghel, lorena; INPG, EE and CS
Moritz, Csaba Andras; U Mass, Amherst, ECE
Stan, Mircea; University of Virginia, ECE
Alexandrescu, Dan; IROC Technologies
Altun, Mustafa

Keywords: Crossbar Arrays, Logic Synthesis, Defect Tolerance, Fault tolerance,
Performance Optimization, Memristor Arrays

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

ITU
ISTANBUL TECNICHAL UNIVERSITY																				

											January	02,	2019	

Dear	Professor	Fabrizio	Lombardi,	

Attached	please	 find	our	submission	to	 IEEE	Transaction	on	Nanotechnology	 for	special	 issue	on	“14th	
ACM/IEEE	 International	Symposium	on	Nanoscale	Architectures”,	 titled	“Circuit	Design	Steps	 for	Nano-
Crossbar	Arrays:	Area-Delay-Power	Optimization	with	Fault	Tolerance”.	

A	 preliminary	 version	 of	 this	 paper,	 titled	 “Integrated	 Synthesis	 Methodology	 for	 Crossbar	 Arrays”	 is	
presented	 at	 the	 14th	 ACM/IEEE	 International	 Symposium	on	Nanoscale	 Architectures.	 Nearly	 50%	 of	
material	in	this	manuscript	is	new:	

• At	least	70%	of	the	material	in	the	logic	synthesis	are	new;	
o we	have	proposed	completely	new	technique	for	two-level	logic	synthesis	for	memristive	

nanoarrays	
o we	have	investigated	multi-level	logic	synthesis	for	four-terminal	switch	based	nanoarrays	

as	well	as	other	types	(diode,	memristor	and	FET),	and	we	have	compared	them,	first	in	
this	study	

• At	least	50%	of	the	material	in	the	subsection	“Defect	Tolerance	for	Four-terminal”	is	new,	we	have	
improved	our	technique	and	described	in	more	detail;		

• At	least	95%	of	the	material	in	the	performance	optimization	is	new,	we	have	made	in-depth	analysis	
oo	complexity	of	delay	and	power	performances	of	nanoarray	types;		

• We	 have	 added	 new	 section	 for	 a	 case	 study	 to	 increase	 comprehensibility	 of	 complete	 design	
methodology;	

The	subject	area	of	this	paper	is	“Developing	a	complete	integrated	synthesis	methodology	for	circuits	
and	architectures”.	
	
Best	Regards,		

	
Mustafa	Altun,	PhD		

Assistant	Professor	
Director	of	the	Emerging	Circuits	and	Computation	Group		
Istanbul	Technical	University	
	
Email:	altunmus@itu.edu.tr	
Web:	www.ecc.itu.edu.tr	
	
ITU	Ayazaga	Campus	34469	Maslak-Istanbul			Phone:	90	212	285	34	00	Fax:	90	212	285	29	09		

Page 1 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) SPECIAL SECTION/ISSUE ON IEEE / ACM INTERNATIONAL SYMPOSIUM ON NANOARCH 2018 1

Circuit Design Steps for Nano-Crossbar Arrays:
Area-Delay-Power Optimization with Fault

Tolerance
M. Ceylan Morgul, Luca Frontini, Onur Tunali, E. Ioana Vatajel, Valentina Ciriani, Lorena Anghel, Csaba Andras

Moritz, Mircea R. Stan, Dan Alexandrescu, and Mustafa Altun

Abstract—Nano-crossbar arrays have emerged to achieve high
performance computing beyond the limits of current CMOS.
They offer area and power efficiency in courtesy of their easy-
to-fabricate and dense physical structures consisting of regularly
placed crosspoints as computing elements. Depending on the
used technology, a crosspoint behaves as a diode, a memristor, a
field effect transistor, or a four-terminal switching device. In this
study, we comparatively elaborate on these technologies in terms
of their capabilities for computing in terms of area, delay, and
power consumption. Also, we consider fault tolerance capabilities
of the arrays. Due to the stochastic nature of nano-fabrication,
nanoarrays have much higher fault rates compared conventional
technologies such as CMOS. As a result, this study introduces a
synthesis methodology that considers basic technology preference
for switching crosspoints and defect or fault rates of the given
nanoarray as well as their effects on performance metrics
including power, delay, and area.

Index Terms—Crossbar Arrays, Logic Synthesis, Defect Tol-
erance, Fault Tolerance, Performance Optimization, Memristor
Arrays

I. INTRODUCTION

Nano-crossbars have emerged to be an alternative technol-
ogy to CMOS [30]. They are fabricated with relatively cheap
bottom-up nano-fabrication techniques rather than using pure
lithography based conventional production. Due to the novel
manufacturing techniques, produced fabrics are regular and in
dense forms that results in area and power efficient structures
[9] [2].

M. Ceylan Morgul and Mustafa Altun are with the Department of Electron-
ics and Communication Engineering, and Onur Tunali is with the Department
of Nanoscience and Nanoengineering of Istanbul Technical University, Istan-
bul, Turkey e-mail: {morgul, onur.tunali, altunmus}@itu.edu.tr

Luca Frontini and Valentina Ciriani are with the Dipartimento di Infor-
matica, Università degli Studi di Milano, Milan, Italy e-mail: {luca.frontini,
valentina.ciriani}@unimi.it

E. Ioana Vatajelu and Lorena Anghel are with TIMA labora-
tory, Grenoble-Alpes University, Grenoble, France e-mail: {ioana.vatajelu,
lorena.anghel}@imag.fr

Csaba Andras Moritz is with the Department of Electrical and Computer
Engineering,University of Massachusetts, Amherst, Massachusetts, USA e-
mail: andras@ecs.umass.edu

Mircea R. Stan are with the Department of Electrical and Computer
Engineering, University of Virginia, Charlottesville, Virginia, USA e-mail:
mircea@virginia.edu

Dan Alexandrescu is with IROC Technologies, Grenoble, France e-mail:
dan.alexandrescu@iroctech.com

This work is part of a project that has received funding from the Euro-
pean Union’s H2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement #691178, as well as supported by the
TUBITAK-Career project #113E760.

Nano-crossbar Array

Crosspoint

a)

b)

c)

Fig. 1. Switching models of a nano-crossbar array: crosspoint as a) two-
terminal switch with terminals in the crossed lines, b) two-terminal switch
with terminals in the same line, and c) four-terminal switch.

Currently, computing is achieved with crosspoints behaving
like switches, either as two-terminal or four-terminal. This is
illustrated in Figure 1. Depending on the used technology, a
two-terminal switch behaves either as a diode [13], a resis-
tive/memristive switch [21], or a field effect transistor (FET)
[22]. Diode and resistive switches correspond to the crosspoint
structure in Figure 1(a); here, the switch is controlled by the
voltage difference between the terminals. Figure 1(b) shows a
FET based switch; here, the red line represents the controlling
input. This is a unique opportunity that allows us to integrate
well developed conventional circuit design techniques into
nano-crossbar arrays. Finally, a novel four-terminal switch is
demonstrated in Figure 1(c) and technology development is
presented and analyzed in a recent paper [19] with detailed
TCAD simulations. In mentioned paper, switching lattice can
be fabricated using CMOS-like technology. It has four terminal
either connected each other or not. Preferred state is actualized
with a controlling input, which is not shown in the Figure 1(c)
and has a separate physical formation from the crossbar, that
is thoroughly explained for different technologies in [3] [19].

To illustrate different computing approaches, we show ex-
amples for the implementation of fXOR2

= x1x2 + x1x2 in
Figure 2. Logic synthesis models for diode and memristor
based crossbars are quiet similar to Programmable Logic Array
(PLA) as can be seen in Figure 2(a) and 2(b). Memristor based
crossbars have one major difference that establishing the out-
put goes through several states/loops (for further information,

Page 2 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) SPECIAL SECTION/ISSUE ON IEEE / ACM INTERNATIONAL SYMPOSIUM ON NANOARCH 2018 2

R1

A

B

f

x1
R3

f

R2

R1

x2 x2x1

a)

f

x1

x2

x2

PFET part NFET part

c)

x1

b)

x1

x2

x2

x1

f
R

d)

Fig. 2. Implementation of fXOR2
with different nano-crossbar types:

crosspoint as a) diode, b) memristor, c) FET, and d) four-terminal switch.

check [29]).
For FET based crossbars, each logic function product and

dual function product is realized by a separate column, as seen
in Figure 2(c). Each input is assigned to a row for controlling
all the FETs on corresponding row.

Finally, a four-terminal based crossbar; here every cross-
point performs switching on all four directions. Control lines
of crosspoints are not shown in Figure 2(d), yet detailed
explanation of control lines can be found in [3] [19].

Regarding emerging technologies and nano-fabrication,
fault rates are much higher for nano-crossbars, as expected,
compared to those of conventional CMOS circuits [10].
Therefore, during logic synthesis, consideration of faults and
defects is mandatory. This applies for the integration of
both diode, FET based or novel four-terminal based logic
synthesis methodologies. For this reason, researchers focus on
challenges including defect and variance tolerances [25] [17].
Defect and variance tolerant approaches are closely related to
logic realization and performance optimization, respectively.

Taking mentioned issues into account, we have developed a
complete integration methodology for logic synthesis, defect
tolerance and performance optimization. This methodology is
designed as a step-by-step guide to combine modular research
approaches into an entire production pipeline.

This work combines detailed survey for all steps of
the methodology with new approaches and techniques for
the missing parts, so a complete synthesis methodology is
achieved. Surveyed and newly studied materials are listed
below.

Surveyed items:
• Single and multi-output logic synthesis for diode, mem-

ristor, and FET based crossbars, and single-output logic
synthesis of four-terminal lattice.

Determining Technology
Crosspoint as

Memristor/Diode FET Four-Terminal

Nano-crossbar Array
Integrated Synthesis Methodology

Fa
br

ic
at

io
n

Po
st

 F
ab

ric
at

io
n

Co
nf

ig
ur

at
io

n

Determining
functionality

Defect Tolerance

Size Redundant
Hardware

Ar
ea

 E
ffi

ci
en

cy
(G

en
er

al
ly

 1
.5

 ti
m

es
 la

rg
er

 s
iz

e
us

ed
)

Defect-aware Defect-unaware

Performance Optimization

Delay Power

Tr
an

si
en

t F
au

lts
 in

-fi
el

d

Testing Transient Fault Tolerance Performance

Single & Multiple Output
Functions

Defect map

Logic Synthesis
Perm

anentDefect
Tolerance

Perform
ance

O
ptim

ization
Transient Fault

Tolerance

Fig. 3. Integrated synthesis methodology scheme for nano-crossbar arrays.

• Defect tolerance technique for diode, memristor, and FET
based crossbars.

• Performance (delay-power) analysis of memristor arrays.

Newly studied items:
• Multi-output logic synthesis for four-terminal lattice, and

comparison with others.
• A greedy optimization algorithm for two-level single-

output memristor crossbar (logic synthesis).
• Defect tolerance technique for four-terminal lattice.
• Performance (delay-power) analysis of diode, FET and

four-terminal arrays

Details of the Integration Methodology

As briefly explained above, nano-fabrication produces
switching nano-crossbar arrays with structures or individual
components having varied properties. Mentioned factors in-
troduce random characteristics of which need to be carefully
considered by synthesis process. For instance, a competent
synthesis methodology must consider basic technology pref-
erence for switching elements and defect or fault rate of the

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) SPECIAL SECTION/ISSUE ON IEEE / ACM INTERNATIONAL SYMPOSIUM ON NANOARCH 2018 3

given nano-crossbar. Presented synthesis methodology in this
study comprehensively covers the all specified factors and
provides optimization algorithms for each step of the process.
A diagram summary demonstrating every step of the method
with annotation showing the certain research tasks is given in
Figure 3.

First step of the synthesis process of a nano-crossbar
involves the decision of switching technology which will
be explained elaborately in Section II. Main purpose is to
determine which of the diode/memristor, FET, or four-terminal
based components are to be used. This step is one of the
most important procedures determining the size of the nano-
crossbar. Production with diode/memristor based technologies
as well as with FET are explained and then logic synthesis
design with four-terminal based switches is given.

Second step of the synthesis process of a nano-crossbar
covers the permanent faults (defects forming in the course of
fabrication) and the tolerance aspects, which will be described
in Section III. Main purpose is to obtain a valid realization
of a given logic function using two distinct approaches titled
as defect-aware and defect-unaware. First method employs
faults existing in nano-crossbar during the realization of logic
function hence the name aware. Second method avoids the
faults by attempting to find a fault-free region of nano-crossbar
at the beginning so realization of given logic function is
straightforward at the end.

Third step of the synthesis process of a nano-crossbar covers
the performance analysis and optimization, which will be
explained in Section IV. Main purpose is to analyse delay and
power consumption of arrays by showing their dependencies
on the properties of the given function as well as specifics of
the used technology.

Final step of the synthesis process of a nano-crossbar
involves the analysis of transient faults. Main purpose is to de-
termine the effect of transient faults to the operational capacity
of nano-crossbar and calculate fault tolerance performance.

Section V is devoted to further elucidate the proposed
synthesis process with a case study.

II. LOGIC SYNTHESIS

In the beginning of the logic synthesis process, the crossbar
technology, i.e., diode, memristor, FET, or four-terminal, needs
to be determined based on the following criteria:
• Crossbar size (number of rows and columns)
• Number of outputs (single or multiple function realiza-

tion)
• Fabrication complexity
• Power and delay specifications
• Application specifications
A decision can be made on the importance and priority of

the listed items, depending on the application. For example,
if an application includes also memory, then the memristor
technology can be chosen for the realization of logic functions,
since the memristor can also be used as a memory unit. Thus,
these components can be fabricated using the same technique.

On the other hand, the realization of a logic function
using a diode or a memristor based crossbar requires less

number of crosspoints than those in the FET based crossbar.
However, the FET based designs consume less power than the
diode/memristor-based designs. Moreover, the four-terminal
based crossbar includes less number of crosspoints than other
crossbar designs [15].

As follows in the first part, we examine the logic synthesis
techniques developed for diode, memristor, and FET based
nanoarrays in the literature; we formulate their crossbar sizes
needed to implement given functions. We also present results
for four-terminal switch based arrays to synthesize multi-
output functions.

In the second part, we present a new two-level synthesis
technique for memristor based nano arrays and compare it
with other techniques in the literature.

A. Area Comparisons for Different Crossbar Technologies

We present the logic synthesis step of the integration
methodology, considering only the number of crosspoints in
the crossbar arrays, which is actually the size of the crossbar
array. The size of an crossbar array including diode, memristor,
FET, and four-terminal is given as follows, where n is the
number of logic functions (the number of outputs); fi denotes
the ith logic function, and fD

i stands for its dual with
1 ≤ i ≤ n.

• Diode:(# of products of all fi) + n)×
((# of literals in f) + n)

• Memristor: ((# of products of all fi) + n)×
((# of literals in f) + 2n) [worst-case]

• FET: (# of literals in f + n)×
((# of products of all fi) +
(# of products of all fD

i))
• Four-terminal: (largest of # of products # in fD

i s)
× (()# of products of all fi) + n− 1) [worst-case]

As mentioned in Section I, the logic synthesis on diode
and memristive based crossbars is similar to the PLA like
synthesis. Thus, the techniques, such as product sharing and
phase changing used in the PLA design, are also applicable
in these designs. Since, the array sizes can be further reduced
using the product sharing, these array size formulations can
be considered as an upper bound for the logic synthesis
techniques.

For the single and multiple output function realization, the
synthesis methodology for FET crossbar does not allow us to
produce multi-level logic synthesis, only two-level approach
can be used [23]. However, multi-level logic synthesis ap-
proach is applicable for the diode and memristive crossbars
[27]. Therefore, the optimization on the array size still de-
mands further research for the diode and memristor based
designs.

The logic synthesis using four-terminal crossbars, generally
known as switching lattices, is a new method. As shown
in [3], Altun presented a useful logic synthesis technique
for the switching lattices. However, this method cannot find
the optimal solution in terms of the lattice size. Therefore,
new specific logic synthesis methodologies are needed to
be presented. As shown in [12] and [15], optimal synthesis

Page 4 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) SPECIAL SECTION/ISSUE ON IEEE / ACM INTERNATIONAL SYMPOSIUM ON NANOARCH 2018 4

TABLE I
ARRAY SIZE COMPARISON OF DIODE, MEMRISTOR, FET, AND

FOUR-TERMINAL SWITCH BASED NANOARRAYS ON MULTIPLE OUTPUT
FUNCTIONS

Benchmarks Diode Memristor FET Four-Terminal [1]
rd53 442 560 819 120

squar5 594 884 900 108
bw 1900 3300 1824 441
inc 897 1280 2231 235

rd73 2210 2620 4658 606
misex1 437 600 1334 126
sqrt8 840 1032 1340 165
ex5p 10823 19596 32864 2664
rd84 5180 6240 10960 2320
clip 2875 3528 6256 685

apex4 16835 25480 72335 7308
sao2 1488 1764 3672 476

ex1010 8820 11800 57960 5958

methodologies are provided. In addition, there are decom-
position based techniques such as XOR based [14], [7], p-
circuit [5] and dimension reducibility [6] decompositions as
well.

However, all of these studies were only focused on the
realization of a single logic function using switching lattices.
On the other hand, in [1], three main steps are presented to
realize the multiple functions using switching lattices. These
steps are given as follows: 1) find the realization of each logic
function using a switching lattice; 2) merge these lattices into
a single lattice; 3) check if these lattices can be realized using
a smaller number of rows and columns such that the final
lattice includes a small number of four-terminal switches.

This article is the first to present the sizes of diode,
memristor, FET, and four-terminal based crossbar arrays on
the multiple output functions. The results are given in Table I.
Note that the results given in bold under the four-terminal
column indicates that they are found using the approximate
algorithm of [1], following the three steps described above.
On the other hand, the other results are found using a divide
and conquer method, based on the divide and synthesize (DS)
method of [1], following the first two steps described above.

As can be observed from Table I, the four-terminal based
crossbar arrays include significantly less number of crosspoints
when compared to the diode, memristor, and FET based
crossbar arrays.

B. Proposed Algorithms for two-level multi output synthesis
for Memristive Arrays

In memristive crossbar arrays, function outputs’ and their
negations are produced [29]. However production order
changes the array size. We have called phase combination-0
and phase combination-1 realization, if realization is happed
based on an output itself and its negation, respectively (note
that in phase combination-1, first its negation is produced
[28]). Based on this property array size of memristive cross-
bars can be optimized.

In our previous study [28], we have proposed a greedy algo-
rithm, which only considers output, individually and doesn’t
consider output interrelation (no product sharing at analysis).
We can call this algorithm as ”initial Greedy Algorithm

TABLE II
AREA COMPARISON OF TWO-LEVEL LOGIC SYNTHESIS ALGORITHMS:
INITIAL GREEDY ALGORITHM (GA-INITIAL) AND PROPOSED GREEDY
ALGORITHM (PGA) WITH OPTIMAL (BRUTE FORCE) AND BASIC [29]

APPROACHES

Benchmarks Basic [29] GA-initial [28] PGA Optimal
rd53 560 416 416 416

squar5 884 858 832 780
inc 1280 1280 1280 1248

rd73 2620 2620 1940 1940
misex1 600 750 600 600
sqrt8 1032 648 648 648
ex5p 19596 19312 19312 **
rd84 6240 6072 4584 4584
clip 3528 3500 3388 3332
sao2 1764 1176 1372 1176

ex1010 11800 11800 11800 11800
alu4 25696 16544 16544 16192
b12 2544 1872 1776 1776

table5 11136 11136 11136 **
vg2 7854 7854 7854 7854

** Time exceeds 600 seconds

(GA-initial)”. On the other hand our new greedy algorithm
considers product sharing with the change of phase.

Proposed Greedy Algorithm (PGA): investigates outputs
collectively by changing phase of outputs, one at a time,
starting from phase combination-0 and phase combination-1.
Compares them; if any of the changed phase combination has
less # of total product; then keeps that phase and continues
searching with changing other outputs phase one at a time.
Algorithm steps are as follows:

1) Step: Compare product numbers of phase combination-
0 and phase combination-1, Set Reference Number as
minimum product number and Save the phase combina-
tion as Reference Phase,

2) Step: Create two sets of candidate phase combination;
set0: which has only one phase-1 and set1: which has
only one phase-0,

3) Step: Find the phase combinations which yields minimum
number of products for the function in set0 and set1.

4) Step: Decide; the phase combination found in step-2 is
in set0 or set1. If it is in set0 further changes will be to
1, and vice versa.

5) Step: Decide; if the product number of the phase combi-
nation is less than Reference Number. If Yes, make that
number of product as Reference Number and Save the
phase combination as Reference Phase; If NO, Jump to
step-7

6) Step: According to decision in step-3, Create a set in-
cludes phase combinations by changing phases of outputs
other than the one which have been already changed in
Reference Phase compared to phase combination-0 or
phase combination-1.

7) Step: While Reference Number is higher or equal to
found in step-5, repeat step-4

8) Step: Finalize phase combinations as Reference Phase.
For example, if we are given a function which has three out-

puts. First we check phases 000 and 111 (phase combination-
0 and phase combination-1). Then calculate product numbers
of phase in phase sets; set0: 001,010,100 (changing zeros

Page 5 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) SPECIAL SECTION/ISSUE ON IEEE / ACM INTERNATIONAL SYMPOSIUM ON NANOARCH 2018 5

Nano-Crossbar Array

: Stuck-at-zero switch

: Stuck-at-one switch

: Configurable switch

Input Lines
O

u
tp

u
t

L
in

e
s

Fig. 4. Nano-crossbar array with faulty/defective crosspoints.

to one), and set1: 111,110,101,011 (Changing ones to zero)
(Note that, we change one at a times). Lets say we compared
product numbers and found that phase 110 yields the least
number product. Then we continue from the phase 110, with
changing ones to zero. Means, we check 100,010 and compare
the results with result of phase 110. If there is one which yields
less product number chose it, or chose the phase 110 for the
final phase combination of the function.

To evaluate the algorithms and compare the results, we use
espresso and MATLAB on a 3.20 GHz Intel Core i7 CPU (only
single core used) with 4GB memory. Results are shown in
Table II. Algorithm performances differs function to function.
For six of the functions PGA results less area size than GA-
initial. Overall, PGA out-competes GA-initial Yet, For two
(clip and sao2) of the functions GA-initial results less area
size than PGA. For the rest they give same result. GA-initials
major advantages is that it has almost no time cost. It can be
used for any case.

III. DEFECT/FAULT TOLERANCE

In this section, we will investigate defects or faults with
categorizing them as permanent (naming defects) and transient
(naming faults). As mentioned in Section I, crossbars tend to
be fabricated with defects. Also, particular transient faults can
occur in the field. Defect tolerance basically means finding
defect-free region or crosspoint which can still be employed
during logic synthesizing. On the other hand, faults can only
be tolerated by redundancy, since they occur transiently. Yet
sensitivity analysis can be made for both types. Defect model
can be found in Figure 4 demonstrating stuck-at-0 (open) and
stuck-at-1 (close). Their features can be summarized as:
• Permanent Faults occur mostly in fabrication and are

tolerated in post-fabrication by redundancy and reconfig-
urability (mapping).

• Transient Faults occur in field and are tolerated in field
by only redundancy

A. Defect Tolerance for Diode, Memristor and FET

Defect tolerance is achieved by realizing a target logic
functions on a defective crossbar using row and column
permutations. This problem is considered as NP-complete
[20]. For the worst-case, N !M ! permutations are required to
find a successful mapping for N ×M crossbar. Algorithms in
the literature use defect-unaware or defect-aware approach.

Defect-unaware algorithms aim to find the largest possible
k × k defect-free sub-crossbar from a defective N × N

crossbar where k ≤ N . The algorithms are inefficient for
high fault rates - obtained k values are much smaller than N .
In this regard, defect-aware algorithms perform much more
satisfactorily [25]. Detailed analysis of both approaches can
be found in [26].

Defect-aware considers the defect characteristics (stuck-at-
0 or stuck-at-1), then decide which switch to employ during
the mapping. In our previous work [25], we have proposed
an efficient heuristic algorithms which aims to match defected
crossbar and the function solution crossbar. For this, it defines
crossbars as matrix. Therefore it can perform sorting, matching
and backtracking steps efficiently. It makes repetition for a
limit of permutation. This controls heuristic feature of the
algorithm.

B. Defect Tolerance for Four-terminal

Four-terminal defect tolerance demands a different approach
than the methods we have covered so far. For this reason,
we present a novel method, which is firstly introduced in
this paper. The proposed method utilizes a prior sensitivity
analysis of crossbar (latttice) to specify critical switches, and
strengthens them with proposed mitigation factors. The same
naming conventions are applicable, regarding defects which
are categorized as stuck-at-0 (SA0) and stuck-at-1 (SA1).
Furthermore, we describe a new defect that can be considered
for crossbars (lattices), that consists in changing a switching
literal in a cell ci,j of the lattice with a literal that is in a
adjacent cell (i.e., ci−1,j , ci+1,j ,ci,j−1, or ci,j+1). We denote
this fault model as Adjacent Cellular Fault Model (ACFM). In
addition, we follow the same terminology adopted in [3] and
[12] by addressing crossbar as lattice and switch as cell to
be consistent and emphasize the distinction of four-terminal
approach. Finally, it should be noted that as opposed the
previous sections, we provide a more detailed explanation due
to original technical contribution presented in this section.

Defect Injection Methodology

This section introduces the algorithms for the defect injec-
tion in the SAFM and in the ACFM.

The two procedures are repeated for each cell of the lattice.
Once the ”defective” lattice is obtained, both the algorithms
generate all the possible 2n inputs (where n is the number of
variables). For each input, the simulation algorithms compare
the given output with the correct one. The two defect injection
algorithms (for the SAFM and the ACFM) differ in the
calculation of number of defective outputs in the two fault
models, as explained in the following subsections.

Fault Model 1: Stuck at Faults (SAFs)

The sensitivity of the decomposition algorithm on a given
crossbar is analyzed face to SA0 and SA1 as being the model
widely adopted today for memristive type of crossbar. As there
is no consensus today on the fault distribution, we have, first
of all, chosen a uniform distribution for each type of SA0 and
SA1 [8]. The fault density considered may be up to 10% of the
crossbar, all faults being independent, as reported in [8]. The
fault injection in the above lattices is performed substituting

Page 6 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) SPECIAL SECTION/ISSUE ON IEEE / ACM INTERNATIONAL SYMPOSIUM ON NANOARCH 2018 6

1 1 1 2 1
1 2 1 2 1
1 2 1 2 1
1 2 1 2 1
1 2 1 0 1

1 0 1 0 0
1 0 1 1 1
1 2 0 2 2
0 1 1 0 0
0 2 2 2 0

b) c)

𝒙𝟒 𝒙𝟕 𝒙𝟓 𝒙𝟒 𝒙𝟒
𝒙𝟓 𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔
𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕
𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕 𝒙𝟒
𝒙𝟒 𝒙𝟔 𝒙𝟕 𝒙𝟒 𝒙𝟕

a)

Fig. 5. a) Lattice design for the example function f and its sensitivity map
for b) SAO and c) SA1.

a single cell with an always stuck-at 1 (SA1) or stack-at 0
(SA0) cell.

Let E0
ij (resp., E1

ij), with 1 ≤ i ≤ r, 1 ≤ j ≤ s, be the
number of defective outputs with a SA0 (resp., SA1) in the
cell (i, j) of the given lattice. Note that 0 ≤ {E0

ij , E
1
ij} ≤ 2n.

Moreover, when E0
ij (resp., E1

ij) is equal to 0 we have that,
for any possible input, the lattice output is never changed by
the SAF in the cell ci,j . In this case, we call the cell ci,j robust
w.r.t. SA0 (resp., SA1). Let R0 (resp., R1) be the total number
of robust cells w.r.t. SA0 (resp., SA1) in the lattice. Finally,
let E0 =

∑i=r
i=1

∑j=s
j=1 E

0
ij (resp., E1 =

∑i=r
i=1

∑j=s
j=1 E

1
ij) be

the total number of defective outputs with SA0 (resp. SA1)
in the simulation. For an example of function f = x4x5x7 +
x4x6x7 + x4x5x6x7 + x4x6x7 + x4x6x7 realized in Figure
5(a) (with the method in [3]), in the Figure 5(b) (resp., 5(c)
shows the map containing E0

ij (resp., E1
ij) in each cell.

Fault Model 2: Adjacent Cellular Faults (ACFs)

In the classical CFM [11] for CMOS circuits it is assumed
that a fault modifies the behavior of exactly one node v in a
given circuit C and that the modified behavior is still combi-
national. This fault for a switching lattice L can be described
as follows: a cellular fault in L is a tuple (ci,j , lc, lf), where
ci,j is the cell of the lattice L (i.e., fault location), lc is the
correct controlling literal in ci,j , and lf (6= lc) is the faulty
controlling literal. We denote adjacent cellular fault a cellular
fault where the faulty literal lf is in an adjacent cell. More
precisely:

Definition 1: Let lh,k be the literal in the cell ch,k of a
lattice L. We have that:

1) A Left Adjacent Cellular Fault (L-ACF) is the cellular
fault (ci,j , li,j , li,j−1) ,

2) A Right Adjacent Cellular Fault (R-ACF) is the cellular
fault (ci,j , li,j , li,j+1),

3) A Bottom Adjacent Cellular Fault (B-ACF) is the cellular
fault (ci,j , li,j , li−1,j),

4) A Top Adjacent Cellular Fault (T-ACF) is the cellular
fault (ci,j , li,j , li+1,j).

Let EL
ij (resp., ER

ij , EB
ij , and ET

ij), with 1 ≤ i ≤ r, 1 ≤
j ≤ s, be the number of defective outputs with a L-ACF
(resp., R-ACF, B-ACF, and T-ACF) in the cell ci,j of the given
lattice. Let Ra (with a ∈ {L,R,B, T}) be the total number
of robust cells w.r.t. a-ACF in the lattice. Finally, let Ea =∑i=r

i=1

∑j=s
j=1 E

a
ij be the total number of defective outputs with

a-ACF in the simulation.

Metrics used for Sensitivity Analysis

In order to evaluate the sensitivity of a lattice to SAF and
ACNF defects, we propose two metrics. The first one measures
the average number of defective outputs considering sensitive
cells to defects only. The second one measures the average
number of defective outputs in the entire lattice. Note that the
total number of cells is the area of the lattice (i.e., r · s), the
number of non-robust cells for SA0 (resp., SA1) is r · s−R0

(resp., r · s − R1), and 2n is the total number of inputs.
Moreover, the number of non-robust cells for a-ACF (with
a ∈ {L,R,B, T}) is r · s−Ra.

The sensitivity of defective cells is the total number
of inputs that give an uncorrected output (Ei, with i ∈
{0, 1, L,R,B, T}) divided by the total number of inputs (2n),
for each non-robust cell. The metric can be expressed as:
Si
C = Ei/(2n·(r·s−Ri)) for each fault i ∈ {0, 1, L,R,B, T}.
The sensitivity of lattice is the total number of inputs that

give an uncorrected output divided by the total number of
inputs for each cell: In particular, Si

L = Ei/(2n · r · s), with
i ∈ {0, 1, L,R,B, T}.
Benchmarks and Simulations

The defect simulations have been run on a machine with
two AMD Opteron 4274HE for a total of 16 CPUs at 2.5
GHz and 128 GByte of main memory, running Linux CentOS
7. The benchmarks functions are expressed in PLA form and
are taken from a subset of LGSynth93 [31]. A total of about
580 functions were considered, and each output of a function
is implemented as a separate Boolean function.

The software used for simulations is written in C++. We
used ESPRESSO to implement the method described in [3],
and a collection of Python scripts for computing minimum-
area lattices by transformation to a series of SAT problems,
to simulate the results reported in [12]. Each SAT execution
is stopped after ten minutes.

In Table III, we report a sample of benchmark functions
and their sensitivity values, according to the metrics presented
before. In particular, Table III refers to lattice synthesized as
described in [3] and [12]. The benchmarks that are present in
Table III with dual method were stopped after ten minutes of
SAT execution, but that was not the case for the rest.

More precisely, in both methods, the first column reports
the name and the number of the considered output of each
function. The following columns report dimension (r × s)
required for the synthesis of a given function according to each
decomposition method, and the number of input variables n.
Columns from 4 to 11 refers to Stuck At fault model, columns
from 12 to 27 to Adjacent Cellular fault model showing the
total number of errors E, the Sensitivity of defective cells SC ,
the Sensitivity of lattice SL and the percentage of robust cells
%R/r × s.

Table IV describes the overall results for the benchmarks
we have considered. It also shows the average values for the
considered metrics. We can note that the percentage of cells
that are considered robust according to our metrics is higher
in the first approach [3]. This is due to the more constrained
structure of the lattices produced by the first synthesis method.
Indeed, the method proposed in [3] computes a lattice for f

Page 7 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) SPECIAL SECTION/ISSUE ON IEEE / ACM INTERNATIONAL SYMPOSIUM ON NANOARCH 2018 7

TABLE III
A SAMPLE OF BENCHMARK FUNCTIONS SYNTHESIZED WITH [3] AND [12] APPROACHES AND THEIR SENSITIVITY VALUES

name Benchmark Size Stuck at Fault Model Adjacent Cellular Fault Model
r × s n E0 S0

C S0
L % R0

r×s
E1 S1

C S1
L % R1

r×s
EL SL

C SL
L % RL

r×s
ER SR

C SR
L % RR

r×s
ET ST

C ST
L % RT

r×s
EB SB

C SB
L % RB

r×s

Synthesis with Dual Method [3]
add6(1) 6×6 4 19 0.06 0.03 47% 9 0.06 0.02 75% 13 0.04 0.02 47% 9 0.04 0.02 58% 6 0.03 0.01 66% 9 0.04 0.02 58%
alu2(2) 11×10 8 462 0.03 0.02 35% 121 0.02 0.01 80% 155 0.01 0.01 54% 187 0.01 0.01 51% 110 0.02 0 76% 32 0.01 0 80%
b11(1) 3×6 7 28 0.02 0.01 44% 73 0.03 0.03 6% 23 0.01 0.01 11% 23 0.01 0.01 11% 65 0.03 0.03 0% 59 0.03 0.03 5%
dc2(0) 4×6 7 117 0.05 0.04 17% 162 0.08 0.05 33% 78 0.01 0 80% 99 0.01 0 79% 160 0.01 0 79% 102 0.01 0 79%

exam(5) 6×11 9 1868 0.07 0.06 17% 131 0.02 0.01 74% 1114 0.04 0.03 15% 2079 0.06 0.06 6% 1208 0.04 0.04 8% 1120 0.04 0.03 5%
rd53(2) 16×16 5 144 0.03 0.02 44% 66 0.03 0.01 74% 77 0.03 0.01 64% 77 0.03 0.01 64% 59 0.025 0.01 71% 59 0.025 0.01 71%
z4(2) 12×12 5 70 0.03 0.02 51% 14 0.03 0 90% 40 0.02 0.01 64% 38 0.02 0.01 65% 12 0.02 0 83% 14 0.02 0 82%

Synthesis with Quantified Boolean Logic [12]
add6(1) 5×3 4 31 0.15 0.13 13% 32 0.14 0.13 7% 13 0.13 0.13 0% 9 0.13 0.13 0% 6 0.13 0.13 0% 9 0.13 0.13 0%
alu2(2) 7×3 8 464 0.1 0.09 14% 384 0.08 0.07 5% 326 0.06 0.06 5% 316 0.06 0.06 10% 291 0.05 0.05 0% 278 0.05 0.05 0%
b11(1) 3×5 7 45 0.03 0.02 7% 128 0.07 0.07 7% 44 0.03 0.02 13% 35 0.02 0.02 13% 125 0.07 0.07 7% 121 0.06 0.06 0%
dc2(0) 4×4 7 104 0.06 0.05 13% 132 0.07 0.06 13% 100 0.05 0.05 6% 54 0.03 0.03 6% 121 0.06 0.06 6% 66 0.03 0.03 6%

mlp4(6) 4×3 4 19 0.12 0.10 17% 30 0.19 0.16 17% 25 0.14 0.13 8% 22 0.11 0.11 0% 18 0.10 0.09 8% 17 0.11 0.09 17%
p3(8) 7×3 8 359 0.07 0.07 5% 192 0.04 0.04 10% 229 0.05 0.04 10% 239 0.05 0.04 5% 150 0.03 0.03 0% 140 0.03 0.03 0%

prom2(0) 6×4 8 148 0.02 0.02 0% 492 0.08 0.08 0% 297 0.05 0.05 8% 295 0.05 0.05 8% 332 0.05 0.05 0% 358 0.06 0.06 0%

TABLE IV
OVERALL RESULTS OF THE SIMULATIONS

Synthesis
Method

Average
area

Average
n

S0
C S0

L % R0

r×s
S1
C S1

L % R1

r×s
SR
C SR

L % RR

r×s
SL
C SL

L % RL

r×s
ST
C ST

L % RT

r×s
SB
C SB

L % RB

r×s

[3] 30 6 0.05 0.05 20% 0.06 0.05 29% 0.02 0.02 18% 0.02 0.02 18% 0.04 0.03 16% 0.03 0.03 16%
[12] 15 7 0.07 0.06 9% 0.07 0.07 8% 0.06 0.06 5% 0.06 0.06 5% 0.08 0.07 4% 0.08 0.07 4%

and its dual that is in general less compact than the lattice
given by [12] (see, the column Average area in Table IV).
Moreover, we can note that the sensitivity of the lattice is quite
low for both methods. In fact, the experiments show that, in
general, non-robust cells compute a defective output for a very
limited number of inputs. In particular Adjacent Cellular faults
have a lower sensitivity with respect to the Stuck At faults.
This is due to the fact that if two adjacent cells contains the
same value this kind of fault does not occur.

Mitigation by Defect Avoidance

From the above results, it can be seen that the two analyzed
mapping algorithms show different sensitivities of the output
of a given function. As a matter of fact, the more restrictive
an algorithm is in terms of area (closer to optimal solution),
the higher the defect sensitivity of the output to cell defect.
It is mandatory to include the mapping algorithm defect-
avoidance heuristics, but hardware-level defect tolerant scheme
may also be necessary, especially in the case of high defect
densities. Redundancy schemes that can be used are inspired
from memory testing and repairing structures published in the
early 2000 [16]. They can be used at a column level, or block
level, as the basic computation unit of memristor array is not
the memristive cell as in classical CMOS based memories, but
an entire column. Therefore, several redundant columns can be
added to the initial design to be able to detect and replace the
memristive RAM affected columns but also to overcome the
potential SAD that affect the redundant parts. Mapping of logic
functions on crossbar arrays are thus divided into two main
phases: mapping phase to write the parameters of functions
in the memristive array and a read operation to check the
results from the crossbar. The objective here is to identify at
the writing time, if common literals and other multiple-choice
literals of the function have to be mapped on highly critical
cells.

Mitigation for Stuck at Faults:

In order to mitigate the sensitivity of a lattice to SAD,
we propose the following possible strategy applied to the
synthesis method proposed in [3] which has been proven as
less sensitive to SAD impact on the output functions: (1) For a
given mapped function, if a potential SA0, SA1 defect affects
a robust cell identified by the defect injection campaign, the
lattice still computes the correct output, thus we do not need
any mitigation with defect tolerant design. (2) However, if an
injected defect occurs in a multiple-choice cell, if a different
literal can be chosen to make the cell robust, we change the
literal with the new one. (3) Otherwise, if the injected SA0
defect is proven as being critical for the output value, the
column that contains that defective cell has to be replaced by
spare columns. In case of an SA1 the row that contains the
defective cell has to be replaced by a spare row. Note that, in
this case, the output still provides a correct function f from
top to bottom, but the function from left to right could be
changed and become a function which will not be dual of f
anymore.

As an example, consider the lattice synthesized in Figure
6(a) with f = x4x5x7 + x4x6x7 + x4x5x6x7 + x4x6x7 +
x4x6x7 by using synthesis method presented in [3]. The
example shows one case of mitigation of 3 independent SAD
affecting the lattice implementing the function, yielding an
approximate 10% defects. In Figure 6, SA1 cells are marked
in blue and SA0 cells a remarked in red.

To avoid output errors due to these SAD we have used the
following strategy:

1) Identify robust cells for a given function mapping. Exam-
ple: the defect in first row, fifth column is non-influent on
the value of the output (robust cell), the sensitivity map,
obtained through defect injection campaign, shows that
this cell is not sensitive to SA1 for the mapped function.

2) Identify the swapping of literals during synthesis process
on a column of an high sensitive cell. Example: the defect

Page 8 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) SPECIAL SECTION/ISSUE ON IEEE / ACM INTERNATIONAL SYMPOSIUM ON NANOARCH 2018 8

Fig. 6. a) defect-free lattice; b) lattice with defects: SA0 in red and SA1 in
blue; and c) lattice with the defect fixed.

in fifth row, fourth column is sensitive to SA1. The former
choice in the yellow cell was x7, choosing x4 the fifth
row, fourth column cell, if it will be affected by a SA1 at
fabrication time, will not affect the output of the function.

3) Identify the critical cell for the output value and add a
spare column per critical cell. Example: the defect in the
third row and second column will influence the value of
the output and no swapping operands is possible, thus the
only solution remains to add a spare column (in green)
identical to the column containing the SA0 defect, and
perform the spare and replace strategy. By using spare
columns, the mapping algorithm can eliminate columns
of the lattice susceptible to affect the output value of the
function in case SA defect appear at fabrication or in the
field.

Mitigation for Adjacent Cellular Faults:
We can note that adjacent cells containing the same control-

ling literal are robust to adjacent cellular faults. For this reason,
in this fault model, it is of huge importance to maximize the
number of adjacent cells with the same controlling literal. For
this purpose, the columns and rows, obtained by the synthesis
method proposed in [3], can be permuted. The properties of
the lattice synthesized with [3] guarantee that row and column
permutations do not effect the Boolean function computed by
the switching lattice.

C. Transient Fault Tolerance

Regarding transient faults, there are two approaches: redun-
dancy based and manipulation of logic function to obtain a

more fault tolerant design. Nevertheless, it should be noted
that since nano-crossbars are in the early stage of development,
there is a lack of in-field data regarding transient faults. For
this reason, second approach towards transient fault tolerance
is methodology independent and rather focuses on the intrinsic
features of the given logic functions. As mentioned, transient
faults can be tolerated with redundancy. Inserting redundant
components can be constructed with adding extra rows and/or
columns as shown [18] [4].

Furthermore, provided certain conditions, particular logic
functions are inherently tolerant to transient faults limited
to certain switches of crossbar as show in [25]. Mentioned
inherent tolerance capability varies depending on the design.
For example, consider a design having low logic inclusion
ratio (IR), meaning less number of crosspoints of a crossbar
are used, that means this design is more tolerant to stuck-at-0
faults. Logic synthesis (design) should be made with regard
to this, since there are multiple design solution.

Similarly, if the target function can be realized with high
IR, then a technology, the one which tends to have stuck-
at-1 faults, should be preferred. for example function f =
x1x2 + x2x3 + x3x4 can also be written as f ′ = x1x2x3 +
x2x3 + x3x4 = f , therefore IR can be increased.

Fault sensitivity analysis can be made using Monte Carlo
analysis, yet it is costly. Since we know the dynamics of
the fault tolerance we can calculate sensitivity (fault tolerance
performance) directly with algebraic equations. Equation pa-
rameters consists of crossbar dimensions, inclusion ratio, fault
occurrence possibility and number of tolerable crosspoint. For
further information please refer to [25].

IV. PERFORMANCE OPTIMIZATION

Area performance of crossbar is previously investigated in
Section II. Here, we will analyze the delay and power depend-
ing on number of products and/or literals. In our previous study
[28], we have concluded this analysis for memristive crossbars.

Here we have used an approach of multiplying resistive and
capacitive loads for delay. This helps us to calculate maximum
frequency with 1/delay. In the delay analysis for diode, we
see that ”number of columns” and ”load resistor” dominate the
capacitive load and resistive load respectively. For memristive
crossbars, it is proportional to constant 7. Considering FET, we
need to calculate resistive loads and capacitive loads from the
longest path for the worst-case scenario. Lastly, four-terminal
delay is directly proportional to the longest path on the lattice,
same as FET. Longest path on the lattice can be calculated as
explained in [3]:

Llong path =

{
R R ≤ 2

⋃
C ≤ 1

3R−2
2

C
2 + 2+(−1)R+(−1)C

2 R > 2
⋂

C > 1

where R: number of rows, C: number of columns, Llong path:
length of the longest path on the lattice.

Delay Analysis:
• Diode: ∝ (load resistor)× (# of literals in f)
• Memristor: ∝ constant : 7 [28]

Page 9 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) SPECIAL SECTION/ISSUE ON IEEE / ACM INTERNATIONAL SYMPOSIUM ON NANOARCH 2018 9

Benchmark

Function

(Squar5)

.i5

.o8

.p25

1-1-0

0--10

.

.

.e

Pla format

Technology

Choice

Crossbar (lattice)

Description

Logic Synthesis

Area Size

Diode 594

FET 900

Memristor 832

4-Terminal 160

Diode

FET

Memristor

4-Terminal

Section II Section III Section IV

Defect/Fault Tolerance Performance Optimization

Defect Tolerance

Diode 100%

FET 100%

Memristor 100%

4-Terminal -

Defect tolerant mapping

Cross.

Desc.

Defect

Map
Delay and Power

Diode R x 10 - 1/R

FET 300 - 1/5

Memristor 7 - 133/5

4-Terminal 73 - 160/73

Fig. 7. Whole integrated synthesis pipeline of benchmark function squar5. R denotes the load resistor.

• FET: ∝ (degree of the largest product in f and fD)
× ((# of products in f) + (# of products in fD) +
of literals in f)

• Four-terminal: ∝ Llong path

Power consumption is total energy used in unit time.
Therefore we estimate consumed total energy in a period,
afterwards we divided it with delay (delay is proportional with
one period maximum frequency). Because we have estimated
circuit will used in maximum frequency.

For power of diode crossbar is dominated by static power.
Thus, it is inversely proportional only with load resistor.
Load resistor can be considered as 10 times of diode’s inner
resistance. Memristor’s total energy consumption is propor-
tional to total memristor count, because it is assumed that all
memristors are changes their states one time only [28]. Total
energy consumption of FET crossbars is directly proportional
to the capacitance of output node and nodes related to the
output node. For four-terminal, we assume all crosspoints
consume energy at worst-case scenario. Finally, we divided
energyy consumption by the delay to find the complexity of
power consumption.

Power Analysis:

• Diode:∝ 1 / (load resistor)
• Memristor: ∝ (total memristor count in crossbar)/7

[28] [24]
• FET:∝ 1 / (degree of the largest product in f and fD)

(@ maximum frequency)
• Four-terminal: ∝ ((# of products in rows) ×

(# of products in columns)) / Llong path

V. A CASE STUDY FOR BENCHMARK FUNCTION Squar5

In this section, we demonstrate the whole process with an
example. We have chosen the benchmark function Squar5
which has 5 inputs, 25 products and 8 outputs in pla format.
Diagram of the process is given in Figure V.

First, we need to evaluate different technologies such as
diode, FET, memristor or four-terminal. Using logic synthesis,
we can generate function descriptions in crossbar (lattice) form
and obtain area sizes utilizing equations in Section II. Results
are as follows:

Diode: (# of products of all foi) + n) ×
((# of literals in f) + n) = (25 + 8) × (10 + 8) =
594.

Memristor: ((# of products of all foi) + n) ×
((# of literals in f) + 2n) = (25 + 8) × (10 + 16) = 858.
However, our proposed greedy algorithm PGA decreases the
size to 832.

FET: (# of literals in f + n) ×
((# of products of all foi)+ (# of products of all fD

oi))
= (10 + 8) × (25 + 25) = 900. Coincidently, its dual also has
the same number of products.

four-terminal: (degree of the largest product in fD
oi)×

(# of products of all foi +n− 1) = 5 x (25 + 8-1) = 160.
First term is chosen according to the product which has the
maximum number of literals.

Secondly, we use function descriptions and defect map
of a crossbar. Applying the defect tolerant logic mapping
methods in Section III, it is possible to measure defect/fault
performance. Key point is that diode, FET and memristor
have a rich literature of methods for reaching 100% defect
tolerance for defect rates up to 10% [26] [28]; nevertheless
four-terminal is at its infancy in terms of defect tolerance. In
this paper, defect performance of only single output functions
are studied and we are planning to extend the work into multi
output functions as well in the future.

Lastly, we conduct a performance optimization specific
to technology dependent delay and power parameters of
crossbars. Since related equations are presented in immediate
section, only result are given:

Diode: Delay is R× 10 (Load resistor is shown with R).
Power is 1/R. If assume R is 10 times than a diode’s inner
resistance, then Delay is 100 and Power is 1/10.

Memristor: Delay is constant and 7. Power is 133/7 ≈ 19.
The number 133 denotes the number of memristors used in
the crossbar.

FET: Delay is 300 and power is 1/5. Including the next
four-terminal, FET has the largest delay.

Four-terminal: The longest path is 73, so is the delay.
Power is 160/73 ≈ 2.

Note that, values only lights the complexity of delay and
power, they are not real elapsed time and power consumption.
Here we assume, they all fabricated with same technology. For

Page 10 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

IEEE TRANSACTIONS ON NANOTECHNOLOGY (TNANO) SPECIAL SECTION/ISSUE ON IEEE / ACM INTERNATIONAL SYMPOSIUM ON NANOARCH 2018 10

instance, in order to calculate the delay of diode crossbars, we
need to know value of R and the source voltage.

To provide an overall evaluation, four-terminal is the most
advantageous choice in terms of area size. However, defect
tolerance is poor especially regarding the complexity and
computation power needed to conduct experiments for four-
terminal. Delay of memristive crossbars is predictable, it
doesn’t depend on function. Therefore, it could be considered
as the most advantageous choice in terms of delay. For power
consumption, diode seems to have least consumption, yet it
is static power also depends source voltage. On the other
hand, FET crossbars has only dynamic power consumption
with complementary architecture.

VI. CONCLUSION AND DISCUSSION

In this study, we present a synthesis methodology
for crossbar arrays having crosspoints working as FET,
diode/resistive/memristive, or four-terminal switch based de-
vices. We cover ”logic synthesis”, ”defect/fault tolerance”, and
”area-power-delay performance optimization” steps. Presented
synthesis methodology provides optimization algorithms for
each step of the process as well as their relations and trade-
offs.

As a future work, a fully automated software tool will be
developed. It takes the target function, the used technology,
and the performance specifications (area, delay and/or power
consumption) as input and return the optimized crossbar-arrays
structure as an output. This software tool to be developed
will benefit from the optimization algorithms introduced in
this study. It will also make the technology mapping using
technology data.

Acknowledgement: We thank Levent Aksoy for his helps to
synthesize multi-output functions with four-terminal switch
based arrays.

REFERENCES

[1] L. Aksoy and M. Altun, “A satisfiability-based approximate algorithm
for logic synthesis using switching lattices.” Design, Automation and
Test 2019 (DATE’19), accepted.

[2] D. Alexandrescu, M. Altun, L. Anghel, A. Bernasconi, V. Ciriani,
L. Frontini, and M. Tahoori, “Synthesis and performance optimization of
a switching nano-crossbar computer,” in Digital System Design (DSD),
2016 Euromicro Conference on. IEEE, 2016, pp. 334–341.

[3] M. Altun and M. D. Riedel, “Logic synthesis for switching lattices,”
IEEE Transactions on Computers, vol. 61, no. 11, pp. 1588–1600, 2012.

[4] S. Baranov, I. Levin, O. Keren, and M. Karpovsky, “Designing fault
tolerant fsm by nano-pla,” in On-Line Testing Symposium, 2009. IOLTS
2009. 15th IEEE International. IEEE, 2009, pp. 229–234.

[5] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, and
T. Villa, “Logic synthesis for switching lattices by decomposition with
p-circuits,” in Digital System Design (DSD), 2016 Euromicro Conference
on. IEEE, 2016, pp. 423–430.

[6] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Synthesis on
switching lattices of dimension-reducible boolean functions,” in Very
Large Scale Integration (VLSI-SoC), 2016 IFIP/IEEE International
Conference on. IEEE, 2016, pp. 1–6.

[7] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Composition
of switching lattices and autosymmetric boolean function synthesis,” in
Digital System Design (DSD), 2017 Euromicro Conference on. IEEE,
2017, pp. 137–144.

[8] C.-Y. Chen, H.-C. Shih, C.-W. Wu, C.-H. Lin, P.-F. Chiu, S.-S. Sheu,
and F. T. Chen, “Rram defect modeling and failure analysis based on
march test and a novel squeeze-search scheme,” IEEE Transactions on
Computers, vol. 64, no. 1, pp. 180–190, 2015.

[9] Y. Chen, G.-Y. Jung, D. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen,
K. A. Nielsen, J. F. Stoddart, and R. S. Williams, “Nanoscale molecular-
switch crossbar circuits,” Nanotechnology, vol. 14, no. 4, p. 462, 2003.

[10] A. DeHon and B. Gojman, “Crystals and snowflakes: building compu-
tation from nanowire crossbars,” Computer, no. 2, pp. 37–45, 2011.

[11] A. Friedman, “Easily testable iterative systems,” IEEE Transactions on
Computers, vol. C-22, pp. 1061–1064, 1973.

[12] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing optimal
switching lattices,” ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), vol. 20, no. 1, p. 6, 2014.

[13] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M.
Lieber, “Logic gates and computation from assembled nanowire building
blocks,” Science, vol. 294, no. 5545, pp. 1313–1317, 2001.

[14] M. C. Morgül and M. Altun, “Anahtarlamalı nano dizinler ile lojik devre
tasarımı ve boyut optimizasyonu logic circuit design with switching nano
arrays and area optimization,” in ELECO, 2014.

[15] M. C. Morgul and M. Altun, “Synthesis and optimization of switching
nanoarrays,” in Design and Diagnostics of Electronic Circuits & Systems
(DDECS), 2015 IEEE 18th International Symposium on. IEEE, 2015,
pp. 161–164.

[16] M. Nicolaidis, L. Anghel, and N. Achouri, “Memory defect tolerance ar-
chitectures for nanotechnologies,” Journal of Electronic Testing, vol. 21,
no. 4, pp. 445–455, 2005.

[17] F. Peker and M. Altun, “A fast hill climbing algorithm for defect
and variation tolerant logic mapping of nano-crossbar arrays,” IEEE
Transactions on Multi-Scale Computing Systems, vol. -accepted-, 2018.

[18] W. Rao, A. Orailoglu, and R. Karri, “Logic level fault tolerance
approaches targeting nanoelectronics plas,” in Design, Automation &
Test in Europe Conference & Exhibition, 2007. DATE’07. IEEE, 2007,
pp. 1–5.

[19] S. Safaltin, O. Gencer, M. Morgul, L. Aksoy, S. Gurmen, C. Moritz, and
M. Altun, “Realization of four-terminal switching lattices: Technology
development and circuit modeling.” Design, Automation and Test 2019
(DATE’19), accepted.

[20] A. M. S. Shrestha, S. Tayu, and S. Ueno, “Orthogonal ray graphs and
nano-pla design.” in ISCAS, 2009, pp. 2930–2933.

[21] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A: Materials Science & Processing, vol. 80, no. 6, pp. 1165–
1172, 2005.

[22] G. Snider, P. Kuekes, T. Hogg, and R. S. Williams, “Nanoelectronic
architectures,” Applied Physics A, vol. 80, no. 6, pp. 1183–1195, 2005.

[23] G. Snider, P. Kuekes, and R. S. Williams, “Cmos-like logic in defective,
nanoscale crossbars,” Nanotechnology, vol. 15, no. 8, p. 881, 2004.

[24] M. Traiola, M. Barbareschi, and A. Bosio, “Estimating dynamic power
consumption for memristor-based cim architecture,” Microelectronics
Reliability, vol. 80, pp. 241–248, 2018.

[25] O. Tunali and M. Altun, “Permanent and transient fault tolerance for
reconfigurable nano-crossbar arrays,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 5, pp.
747–760, 2017.

[26] O. Tunali and M. Altun, “A survey of fault-tolerance algorithms for
reconfigurable nano-crossbar arrays,” ACM Comput. Surv., vol. 50, no. 6,
pp. 79:1–79:35, Nov. 2017.

[27] O. Tunali and M. Altun, “Logic synthesis and defect tolerance for
memristive crossbar arrays,” in Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2018, 2018.

[28] O. Tunali, M. C. Morgul, and M. Altun, “Defect-tolerant logic synthesis
for memristor crossbars with performance evaluation,” IEEE Micro,
vol. 38, no. 5, pp. 22–31, 2018.

[29] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels,
“Fast boolean logic mapped on memristor crossbar,” in Computer Design
(ICCD), 2015 33rd IEEE International Conference on. IEEE, 2015,
pp. 335–342.

[30] H. Yan, H. S. Choe, S. Nam, Y. Hu, S. Das, J. F. Klemic, J. C.
Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits for
nanoprocessors,” Nature, vol. 470, no. 7333, pp. 240–244, 2011.

[31] S. Yang, Logic synthesis and optimization benchmarks user guide:
version 3.0. Microelectronics Center of North Carolina (MCNC), 1991.

Page 11 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

Integrated Synthesis Methodology for Crossbar Arrays∗

1st M. Ceylan Morgul
3rd Onur Tunali

10th Mustafa Altun
Istanbul Technical University

Istanbul, Turkey
{morgul, onur.tunali, altunmus}@itu.edu.tr

2nd Luca Frontini
5th Valentina Ciriani

Università degli Studi di Milano
Milan, Italy

{luca.frontini, valentina.ciriani}@unimi.it

4th E. Ioana Vatajelu
6th Lorena Anghel
TIMA laboratory

Grenoble-Alpes University
Grenoble, France

{ioana.vatajelu, lorena.anghel}@imag.fr

7th Csaba Andras Moritz
University of Massachusetts, Amherst

Massachusetts, USA
andras@ecs.umass.edu

8th Mircea R. Stan
University of Virginia

Charlottesville, Virginia, USA
mircea@virginia.edu

9th Dan Alexandrescu
IROC Technologies
Grenoble, France

dan.alexandrescu@iroctech.com

ABSTRACT
Nano-crossbar arrays have emerged as area and power efficient
structures with an aim of achieving high performance computing
beyond the limits of current CMOS. Due to the stochastic nature
of nano-fabrication, nano arrays show different properties both
in structural and physical device levels compared to conventional
technologies. Mentioned factors introduce random characteristics
that need to be carefully considered by synthesis process. For in-
stance, a competent synthesis methodology must consider basic
technology preference for switching elements, defect or fault rates
of the given nano switching array and the variation values as well
as their effects on performance metrics including power, delay, and
area. Presented synthesis methodology in this study comprehen-
sively covers the all specified factors and provides optimization
algorithms for each step of the process.

CCS CONCEPTS
•Hardware→ Emerging architectures; Emerging tools and method-
ologies;

KEYWORDS
Crossbar Arrays, Logic Synthesis, Defect Tolerance, Fault Tolerance,
Performance Optimization, Memristor Arrays

1 INTRODUCTION
Nano-crossbars are emerged to be an alternative technology besides
CMOS [25]. They are fabricated with relatively cheap bottom-up

∗This work is part of a project that has received funding from the European Union’s
H2020 research and innovation programme under the Marie Sklodowska-Curie grant
agreement #691178, as well as supported by the TUBITAK-Career project #113E760.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NANOARCH ’18, July 17–19, 2018, Athens, Greece
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5815-6/18/07. . . $15.00
https://doi.org/10.1145/3232195.3232211

Nano-crossbar Array

Crosspoint

a)

b)

c)

Figure 1: Switching models of a nano-crossbar array: cross-
point as a) two-terminal switch with terminals in the
crossed lines, b) two-terminal switch with terminals in the
same line, and c) four-terminal switch.

nano-fabrication techniques rather than using purely lithography
based conventional production. Due to the novel manufacturing
techniques, fabrics yield to be in regular and dense form [7]. Because
of their structure and technology, they are area and power efficient
[1].

Currently, computing is achieved with crosspoints behaving like
switches, either as two-terminal or four-terminal. This is illustrated
in Figure 1. Depending on the used technology, a two-terminal
switch behaves either as a diode [11], a resistive/memristive switch
[18], or a field effect transistor (FET) [19]. Diode and resistive
switches correspond to the crosspoint structure in Figure 1(a); here,
the switch is controlled by the voltage difference between the ter-
minals. Figure 1(b) shows a FET based switch; here, the red line
represents the controlling input. This is a unique opportunity that
allows us to integrate well developed conventional circuit design
techniques into nano-crossbar arrays. Finally, a novel four-terminal
switch is given in Figure 1(c). The controlling input, not shown in
the figure, has a separate physical formation from the crossbar that
is thoroughly explained for different technologies in [2].

To illustrate their computing approaches, we show examples
for the implementation of fXOR2 = x1x2 + x1x2 in Figure 2. Logic

Page 12 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

https://doi.org/10.1145/3232195.3232211

NANOARCH ’18, July 17–19, 2018, Athens, Greece M. C. Morgul et al.

R1

A

B

f

x1
R3

f

R2

R1

x2 x2x1

a)

f

x1

x2

x2

PFET part NFET part

c)

x1

b)

x1

x2

x2

x1

f
R

d)

Figure 2: Implementation of fXOR2 with different nano-
crossbar types: crosspoint as a) diode, b) memristor, c) FET,
and d) four-terminal switch.

synthesis models for diode and memristor based crossbars are very
much PLA-like as can be seen in Figure 2(a) and 2(b). Memristor
based crossbars have one major difference that logic computation is
made through several states/loops (for further information, check
[24]). For FET based crossbars, each product of the function or
function’s dual is realized by a separate column, as seen in Figure
2(c). Each inputs is assigned to a row to control the FETs on the
corresponding row. Another type is a four-terminal based crossbar;
here every crosspoint performs switching on all four directions.
Crosspoints’ control lines are not shown in Figure 2(d), yet detailed
explanation of control lines can be found in [2].

Regarding emerging technologies and nano-fabrication, fault
rates are much higher for nano-crossbars, as expected, compared
to those of conventional CMOS circuits [8]. Therefore, during logic
synthesis, consideration of faults and defects is mandatory. This ap-
plies for the integration of both diode, FET based or novel 4-terminal
based logic synthesis methodologies. For this reason, researchers
focus on challenges including defect and variance tolerances [21]
[10]. Defect and variance tolerant approaches are closely related to
logic realization and performance optimization, respectively.

Taking mentioned issues into account, we have developed a
complete integration methodology for logic synthesis, defect toler-
ance and performance optimization with variance tolerance. This
methodology is designed as a step-by-step guide to combine mod-
ular research approaches into an entire production pipeline. The
overview of proposed integrated methodology is explained in Sec-
tion 2. Following sections, we have demonstrated and reviewed
the current methods with the exception of Section 4.2. Since four-
terminal design parts from the rest in terms of defect tolerance, we
present a preliminary and novel approach for defect tolerance of

Determining Technology

Crosspoint as

Memristor/Diode FET 4-Terminal

Nano-crossbar Array

Integrated Synthesis Methodology

F
a
b

ri
c
a
ti

o
n

P
o

s
t

F
a
b

ri
c
a
ti

o
n

C
o

n
fi

g
u

ra
ti

o
n

Determining

functionality

Defect Tolerance

Size
Redundant

Hardware

A
re

a
 E

ff
ic

ie
n

c
y

(G
e
n

e
ra

ll
y

 1
.5

 t
im

e
s
 l

a
rg

e
r

s
iz

e
 u

s
e
d

)

Defect-aware Defect-unaware

Variance Tolerance

Delay Power

T
ra

n
s
ie

n
t

F
a
u

lt
s
 i

n
-f

ie
ld

Testing Transient Fault Tolerance Performance

Multiple Output

Functions

Defect map

L
o

g
ic

 S
y

n
th

e
s
is

P
e
rm

a
n

e
n

t
D

e
fe

c
t

T
o

le
ra

n
c
e

P
e
rfo

rm
a
n

c
e

O
p

tim
iz

a
tio

n
T

ra
n

s
ie

n
t

F
a
u

lt

T
o

le
ra

n
c
e

Single Output

Functions

Defect-aware

Figure 3: Integrated synthesis methodology scheme for
nano-crossbar arrays.

four-terminal crossbars which is anticipated as an initial step in
further research.

2 PROPOSED INTEGRATION
METHODOLOGY

As briefly explained in the previous section, nano-fabrication deliv-
ers switching nano-crossbar arrays with structures or individual
components having varied properties. Mentioned factors introduce
random characteristics of which need to be carefully considered
by synthesis process. For instance, a competent synthesis method-
ology must consider basic technology preference for switching
elements, defect or fault rate of the given nano-crossbar and the
variation values. Presented synthesis methodology in this study
comprehensively covers the all specified factors and provides op-
timization algorithms for each step of the process. A schematic
summary demonstrating every step of the method with annotation
showing the certain research tasks is given in Figure 3.

Page 13 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

Integrated Synthesis Methodology for Crossbar Arrays NANOARCH ’18, July 17–19, 2018, Athens, Greece

First step of the synthesis process of a nano-crossbar involves
the decision of switching technology which will be explained elab-
orately in Section 3. Main purpose is to determine which of the
diode/memristor, FET, or four-terminal based components are to be
used. This step is one of the most important procedures determin-
ing the size of the nano-crossbar. Production with diode/memristor
based technologies as well as with FET are explained and then logic
synthesis design with four-terminal based switches is given.

Second step of the synthesis process of a nano-crossbar covers
the permanent faults (defects forming in the course of fabrication)
and the tolerance aspects, which will be described in Section 4. Main
purpose is to obtain a valid realization of a given logic function
using two distinct approaches titled as defect-aware and defect-
unaware. First method employs faults existing in nano-crossbar
during the realization of logic function hence the name aware.
Second method avoids the faults by attempting to find a fault-free
region of nano-crossbar at the beginning so realization of given
logic function is straightforward at the end.

Third step of the synthesis process of a nano-crossbar covers
the variation minimization, which will be explained in Section 5.
Main purpose is to minimize the overall delay by considering the
individual variation values of components used in logic synthesis.
Heuristic algorithms in the literature produce results very close to
theoretical lower bound.

Delay minimization stage of the fourth step can be modified to
include power optimization and fault tolerance as well. An objective
function added to the variation tolerant algorithms guides the pro-
cess to minimize both delay and power values of a nano-crossbar.
Nevertheless, since this is a multi-level optimization, performance
of the algorithm diminishes to an extent. In order to execute a
parametric optimization, trade-offs must be decided considering
technology dependent features and other conditions for the ob-
jective function. Furthermore, fault tolerance mechanism can be
appended to the delay minimization process. It is possible to avoid
faulty elements by assigning infinite variation values to them. Since
the heuristic is based on minimizing the variation values of the
nano-crossbar, fault avoidance is inherently established.

Final step of the synthesis process of a nano-crossbar involves
the analysis of transient faults. Main purpose is to determine the
effect of transient faults to the operational capacity of nano-crossbar
and calculate fault tolerance performance.

3 LOGIC SYNTHESIS
At the beginning of logic synthesis process, crossbar technology
must be determined based on certain fundamental criteria:
• Crossbar size limits (area) and Function size
• Fabrication Complexity
• Function output number (Multi or single output realization)
• Power and Delay Specifications
• Application specification (memory based etc.)

Decision should be made on the importance of the listed items;
this could change depending on the application. For example, if an
application has also memory unit, then it will be smart to choose
memristor technology for logic unit. Since memristor could be used
on memory unit as well, then they can interact more smoothly and
the same fabrication technique could be used for both.

On the other hand, realization of a function with diode or mem-
ristor based crossbar requires less area than FET based option. How-
ever FET has better power performance over other technologies. In
addition to all, four-terminal based crossbar performs better results
on most of the function in terms of area [13].

In this section, we survey logic synthesis step of the integration
methodology by considering only area size of the crossbar arrays.
Array size formulations, which are given below, could be a guideline
to this.

Array size formulations for single output function f (where f ’s
dual is f D):

• for Diode:(number o f products in f) + 1) ×
((number o f literals in f) + 1)
• forMemristor: ((number o f products in f) + 2) ×
((number o f literals in f) + 2)
• for FET: (number o f literals in f) ×
((number o f products in f) + (number o f products in f D))
• for 4-terminal: (number o f products in f D) ×
(number o f products in f)

For the single and multi output function realization, synthesis
methodology for FET crossbar does not allow us to produce multi-
level logic synthesis, only two-level approach can be used [20].
However, multi-level logic synthesis approach is applicable for
diode and memristive crossbars [23]. Therefore, area optimization
still demands further research for FET systems. Furthermore, as
mentioned in Section 1, logic synthesis on diode and memristive
crossbars is similar to PLA like synthesis. So the same approaches
(which for the PLA) are applicable such as product sharing, phase
changing etc.

Logic synthesis on four-terminal crossbars (lattices) is relatively
a new method and technology. As shown in [2], Altun presented
a useful logic synthesis technique for four-terminal crossbars (lat-
tices). Yet mentioned method does not warrant the fact that pro-
duced lattice has optimal solution in terms of area. Therefore, new
specific logic synthesis methodologies are needed to be presented.
As shown in [9] and [13], optimal synthesis methodologies are
provided. In addition, there are decomposition based techniques
such as XOR based [12] [6], p-circuit [4] and dimension reducibility
[5] decompositions as well.

4 DEFECT/FAULT TOLERANCE
In this section, we will investigate defects or faults with catego-
rizing them as permanent (naming defects) and transient (naming
faults). As mentioned in Section 1, crossbars tend to be fabricated
with defects. Also, particular transient faults can occur in the field.
Defect tolerance basically means finding defect-free region or cross-
point which can still be employed during logic synthesizing. On the
other hand, faults can only be tolerated by redundancy, since they
happens transiently. Yet sensitivity analysis can be made for both
types. Defect model can be found in Figure 4 demonstrating stuck-
at-0 (open) and stuck-at-1 (close). Their features can be summarized
as:

• Permanent Faults occur mostly in fabrication and are toler-
ated in post-fabrication by redundancy and reconfigurability
(mapping).

Page 14 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

NANOARCH ’18, July 17–19, 2018, Athens, Greece M. C. Morgul et al.

Nano-Crossbar Array

: Stuck-at-zero switch

: Stuck-at-one switch

: Configurable switch

Input Lines

O
u
tp

u
t

L
in

e
s

Figure 4: Nano-crossbar array with faulty/defective cross-
points.

• Transient Faults occur in field and are tolerated in field by
only redundancy

4.1 Defect Tolerance for Diode, Memristor and
FET

Defect tolerance is achieved by realizing a target logic functions
on a defective crossbar using row and column permutations. This
problem is considered as NP-complete [17]. For the worst-case,
N !M! permutations are required to find a successful mapping for
N ×M crossbar. Algorithms in the literature use defect-unaware or
defect-aware approach.

Defect-unaware algorithms aim to find the largest possible k ×k
defect-free sub-crossbar from a defective N × N crossbar where
k ≤ N [27]. The algorithms are inefficient for high fault rates -
obtained k values are much smaller than N [27]. In this regard,
defect-aware algorithms perform much more satisfactorily [21]. We
have performed detailed analysis of algorithms in [22].

Defect-aware considers the defect characteristics (stuck-at-0 or
stuck-at-1), then decide which switch to employ during the map-
ping. In our previous work [21], we have proposed an efficient
heuristic algorithms which aims to match defected crossbar and
the function solution crossbar. For this, it defines crossbars as ma-
trix. Therefore it can perform sorting, matching and backtracking
steps efficiently. It makes repetition for a limit of permutation. This
controls heuristic feature of the algorithm.

4.2 Defect Tolerance for Four-terminal
Four-terminal defect tolerance demands a different approach than
the methods we have covered so far. For this reason, we present a
novel method, which is firstly introduced in this paper. The Method
utilizes a prior sensitivity analysis of crossbar to specify critical
switches, and strengthens them with proposed mitigation factors.
The same naming conventions are applicable, regarding defects
which are categorized as stuck-at-0 (SA0) and stuck-at-1 (SA1). In
addition, we follow the same terminology adopted in [2] and [9]
by addressing crossbar as lattice and switch as cell to be consistent
and emphasize the distinction of four-terminal approach. Finally, it
should be noted that as opposed the previous sections, we provide
a more detailed explanation due to original technical contribution
presented in this section.

4.2.1 Defect Injection Methodology. We perform a defect injec-
tion with uniform distribution to lattice reaching defect densities up
to 10%. Every cell (a four-terminal switch) is presumed to have only
SA0 or SA1. Once the "defective" lattice is obtained, the algorithm

1 1 1 2 1
1 2 1 2 1
1 2 1 2 1
1 2 1 2 1
1 2 1 0 1

1 0 1 0 0
1 0 1 1 1
1 2 0 2 2
0 1 1 0 0
0 2 2 2 0

b) c)

𝒙𝟒 𝒙𝟕 𝒙𝟓 𝒙𝟒 𝒙𝟒
𝒙𝟓 𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔
𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕
𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕 𝒙𝟒
𝒙𝟒 𝒙𝟔 𝒙𝟕 𝒙𝟒 𝒙𝟕

a)
Figure 5: a) Lattice design for the example function f and its
sensitivity map for b) SAO and c) SA1.

generates all the possible 2n inputs (where n is the number of vari-
ables). For each input, the simulation algorithm compares the given
output with the correct one. Let E0i j (resp., E

1
i j), with 1 ≤ i ≤ r ,

1 ≤ j ≤ s , be the number of defective outputs with a SA0 (resp., SA1)
in the cell (i, j) of the given lattice. Note that 0 ≤ {E0i j , E

1
i j } ≤ 2n .

Moreover, when E0i j (resp., E
1
i j) is equal to 0 we have that, for any

possible input, the lattice output is never changed by the SAF in
the cell (i, j). In this case, we call the cell (i,j) robust w.r.t. SA0
(resp., SA1). Let R0 (resp., R1) be the total number of robust cells
w.r.t. SA0 (resp., SA1) in the lattice. Finally, let E0 =

∑i=r
i=1
∑j=s
j=1 E

0
i j

(resp., E1 =
∑i=r
i=1
∑j=s
j=1 E

1
i j) be the total number of defective output

with SA0 (resp. SA1) in the simulation. For an example of function
f = x4x5x7+x4x6x7+x4x5x6x7+x4x6x7+x4x6x7 realized in Figure
5(a) (with the method in [2]), in the Figure 5(b) (resp., 5(c) shows
the map containing E0i j (resp., E

1
i j) in each cell.

4.2.2 Metrics used for Sensitivity Analysis. In order to evaluate
the sensitivity of a lattice to SA0 and SA1 defects, we propose two
metrics. The first one measures the average number of defective
outputs considering sensitive cells to SA0 or SA1 only. The second
one measures the average number of defective outputs in the entire
lattice. Note that the total number of cells is the area of the lattice
(i.e., r × s), the number of non-robust cells for SA0 (resp., SA1) is
r × s − R0 (resp., r × s − R1), and 2n is the total number of inputs.
(1) Sensitivity of defective cells is the total number of inputs that
give an uncorrected output (E0 and E1) divided by the total number
of inputs (2n), for each non-robust cell (r × s − R0 or r × s − R1). In
the case of SA0 the metric can be expressed as: S0C = E0/(2n (r ×
s −R0)). The same reasoning can be done for SA1 defect sensitivity.
(2) Sensitivity of lattice is the total number of inputs that give an
uncorrected output divided by the total number of inputs for each
cell, in the case of SA0 is: S0L = E0/(2n (r × s)). The SA1 case is
analogous.

4.2.3 Benchmarks and Simulations. The defect simulations have
been run on a machine with two AMD Opteron 4274HE for a total
of 16 CPUs at 2.5 GHz and 128 GByte of main memory, running
Linux CentOS 7. The benchmarks functions are expressed in PLA
form and are taken from a subset of LGSynth93 [26]. A total of
about 580 functions were considered, and each output of a function
is implemented as a separate Boolean function.

The software used for simulations is written in C++. We used
ESPRESSO to implement the method described in [2], and a col-
lection of Python scripts for computing minimum-area lattices by
transformation to a series of SAT problems, to simulate the results
reported in [9]. Each SAT execution is stopped after ten minutes.

Page 15 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

Integrated Synthesis Methodology for Crossbar Arrays NANOARCH ’18, July 17–19, 2018, Athens, Greece

Table 1: A sample of benchmark functions synthesized
with [2] and [9] approaches and their sensitivity values

name r × s n E0 S0C S0L % R0
r×s E1 S1C S1L % R1

r×s
Synthesis with Dual Method [2]

add6(1) 6×6 4 19 0.06 0.03 47% 9 0.06 0.02 75%
alu2(2) 11×10 8 462 0.03 0.02 35% 121 0.02 0.01 80%
b11(1) 3×6 7 28 0.02 0.01 44% 73 0.03 0.03 6%
dc2(0) 4×6 7 117 0.05 0.04 17% 162 0.08 0.05 33%
exam(5) 6×11 9 1868 0.07 0.06 17% 131 0.02 0.01 74%
z4(2) 12×12 5 70 0.03 0.02 51% 14 0.03 0 90%

Synthesis with Quantified Boolean Logic [9]
add6_G_1 5×3 4 31 0.15 0.13 13% 32 0.14 0.13 7%
alu2_G_2 7×3 8 464 0.1 0.09 14% 384 0.08 0.07 5%
b11_G_1 3×5 7 45 0.03 0.02 7% 128 0.07 0.07 7%
dc2_G_0 4×4 7 104 0.06 0.05 13% 132 0.07 0.06 13%

Table 2: Overall results of the simulations
Synthesis
Method

Average
area

Average
n

S0C S0L % R0
r×s S1C S1L % R1

r×s

[2] 30 6 0.05 0.05 20% 0.06 0.05 29%
[9] 15 7 0.07 0.06 9% 0.07 0.07 8%

In Table 1, we report a sample of benchmark functions and their
sensitivity values, according to the metrics presented before. In
particular, Table 1 refers to lattice synthesized as described in [2]
and [9]. The benchmarks that are present in Table 1 with dual
method were stopped after ten minutes of SAT execution, but that
was not the case for the rest.

More precisely, in both methods, the first column reports the
name and the number of the considered output of each function.
The following columns report dimension (r × s) required for the
synthesis of a given function according to each decomposition
method, and the number of input variables n. Columns from 4 to
7 refers to SA0 defect metrics (resp., columns from 8 to 11 to SA1
metrics) showing the total number of errors E0, the Sensitivity of
defective cells S0C , the Sensitivity of lattice S0L and the percentage
of robust cells %R0/r × s .

Table 2 describes the overall results for the benchmarks we have
considered. It also shows the average values for the considered
metrics. We can note that the percentage of cells that are considered
robust according to our metrics is higher in the first approach [2].
This is due to themore constrained structure of the lattices produced
by the first synthesis method. Indeed, the method proposed in
[2] computes a lattice for f and its dual that is in general less
compact than the lattice given by [9] (see, the column Average area
in Table 2). Moreover, we can note that the sensitivity of the lattice
to stuck-at-defects (SAD) is quite low for both methods. In fact, the
experiments show that, in general, non-robust cells -in presence of
a SAD- compute a defective output for a very limited number of
inputs.

4.2.4 Mitigation by Defect Avoidance. From the above results,
it can be seen that the two analyzed mapping algorithm shows
different sensitivities of the output of a given function. As a matter
of fact, the more restrictive an algorithm is in terms of area (results
closer to optimal solution), the higher the defect sensitivity of the
output to cell defect of SA0 or SA1. It is mandatory to include in
the mapping algorithm defect-avoidance heuristics.

𝒙𝟒 𝒙𝟕 𝒙𝟓 𝒙𝟒,𝒙𝟕 𝒙𝟒

𝒙𝟓
𝒙𝟔,𝒙𝟒,
𝒙𝟕

𝒙𝟒 𝒙𝟕 𝒙𝟔

𝒙𝟕 𝒙𝟒
𝒙𝟕,𝒙𝟒,
𝒙𝟔

𝒙𝟔 𝒙𝟕

𝒙𝟒 𝒙𝟕 𝒙𝟔
𝒙𝟒,𝒙𝟔,
𝒙𝟕

𝒙𝟒

𝒙𝟒,𝒙𝟕 𝒙𝟔 𝒙𝟕 𝒙𝟒
𝒙𝟒,𝒙𝟔,
𝒙𝟕

𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟓 𝒙𝟒 𝒙𝟒

𝒙𝟕 𝒙𝟓 𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔

𝒙𝟒 𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕

𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟒 𝒙𝟒

𝒙𝟔 𝒙𝟒 𝒙𝟔 𝒙𝟕 𝒙𝟒 𝒙𝟕

𝒇 = 𝒙𝟒𝒙𝟓𝒙𝟕 + 𝒙𝟒𝒙𝟔𝒙𝟕 + 𝒙𝟒 𝒙𝟓𝒙𝟔𝒙𝟕 + 𝒙𝟒𝒙𝟔 𝒙𝟕 + 𝒙𝟒𝒙𝟔𝒙𝟕

𝒙𝟒 𝒙𝟕 𝒙𝟓 𝒙𝟒 𝒙𝟒

𝒙𝟓 𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔

𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕

𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕 𝒙𝟒

𝒙𝟒 𝒙𝟔 𝒙𝟕 𝒙𝟒 𝒙𝟕

Given Logic Function
P

o
s

s
ib

le
 L

ite
ra

l

A
p

p
o

in
tm

e
n

ts

a)

b) c)

Figure 6: a) defect-free lattice; b) lattice with defects: SA0 in
red and SA1 in blue; and c) lattice with the defect fixed.

In order to mitigate the sensitivity of a lattice to SAD, we propose
the following possible strategy applied to the synthesis method
proposed in [2] which has been proven as less sensitive to SAD
impact on the output functions: (1) For a given mapped function, if a
potential SA0, SA1 defect affects a robust cell identified by the defect
injection campaign, the lattice still computes the correct output,
thus we do not need any mitigation with defect tolerant design. (2)
However, if an injected defect occurs in a multiple-choice cell, if a
different literal can be chosen to make the cell robust, we change the
literal with the new one. (3) Otherwise, if the injected SA0 defect
is proven as being critical for the output value, the column that
contains that defective cell has to be replaced by spare columns.
In case of an SA1 the row that contains the defective cell has to
be replaced by a spare row. Note that, in this case, the output still
provides a correct function f from top to bottom, but the function
from left to right could be changed and become a function which
will not be dual of f anymore.

As an example, consider the lattice synthesized in Figure 6(a)
with f = x4x5x7 + x4x6x7 + x4x5x6x7 + x4x6x7 + x4x6x7 by using
synthesis method presented in [2]. The example shows one case of
mitigation of 3 independent SAD affecting the crossbar implement-
ing the function, yielding an approximative 10% defects. In Figure
6, SA1 cells are marked in blue and SA0 cells a remarked in red.

4.3 Transient Fault Tolerance
Regarding transient faults, there are two approaches: redundancy
based and manipulation of logic function to obtain a more fault
tolerant design. Nevertheless, it should be noted that since nano-
crossbars are in the early stage of development, there is a lack
of in-field data regarding transient faults. For this reason, second
approach towards transient fault tolerance is methodology inde-
pendent and rather focuses on the intrinsic features of the given
logic functions.

Page 16 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

NANOARCH ’18, July 17–19, 2018, Athens, Greece M. C. Morgul et al.

As mentioned, transient faults can be tolerated with redundancy.
Inserting redundant components can be constructed with adding
extra rows and/or columns as shown [16] [3].

Furthermore, provided certain conditions, particular logic func-
tions are inherently tolerant to transient faults limited to certain
switches of crossbar as show in [21].

Mentioned inherent tolerance capability varies depending on the
design. For example, consider a design having low logic inclusion
ratio (IR), meaning less number of crosspoints of a crossbar are
used, that means this design is more tolerant to stuck-at-0 faults.
Logic synthesis (design) should be made with regard to this, since
there are multiple design solution.

Similarly, if the target function can be realized with high IR, then
a technology, the one which tends to have stuck-at-1 faults, should
be preferred. for example function f = x1x2 + x2x3 + x3x4 can also
be written as f ′ = x1x2x3 + x2x3 + x3x4 = f , therefore IR can be
increased.

Fault sensitivity analysis can bemade usingMonte Carlo analysis,
yet it is costly. Since we know the dynamics of the fault tolerance
we can calculate sensitivity (fault tolerance performance) directly
with algebraic equations. Equation parameters consists of crossbar
dimensions, inclusion ratio, fault occurrence possibility and number
of tolerable crosspoint. For further information please refer to [21].

5 VARIANCE TOLERANCE AND
PERFORMANCE OPTIMIZATION

Another aspect of the crossbar fabrication is that every crosspoint
does not have the same property in terms of dimension, doping,
etc. [14]. It is called variance of crosspoints. This affects threshold
voltages andON andOFF resistances aswell as capacitance values. It
means that delay and power performances are changing. Decision
of which crosspoint switches are going to be used during logic
design plays a crucial role in performance optimization. To achieve
variation tolerant delay values, different optimization algorithms
have been proposed [28] [15]. These algorithms aim to optimize
the worst-case delay values in logic mapping. They use Gaussian
distribution to model variances.

On the other hand, the literature lacks variation tolerant power
optimization algorithms. Considering that fault tolerance mecha-
nism can be appended to the delay minimization process, variation-
power-delay optimizations are needed. This can be considered as a
future direction. Another future direction is performing sensitivity
analysis for switching components of the arrays.

6 CONCLUSION AND DISCUSSION
In this study, we present a synthesis methodology for crossbar ar-
rays having crosspoints working as FET, diode/resistive/memristive,
or four-terminal switch based devices. We cover "logic synthesis",
"defect/fault tolerance", and "variation-area-power-delay perfor-
mance optimization" steps. Presented synthesis methodology pro-
vides optimization algorithms for each step of the process as well
as their relations and trade-offs.

REFERENCES
[1] Dan Alexandrescu, Mustafa Altun, Lorena Anghel, Anna Bernasconi, Valentina

Ciriani, Luca Frontini, and Mehdi Tahoori. 2016. Synthesis and Performance
Optimization of a Switching Nano-Crossbar Computer. In Digital System Design
(DSD), 2016 Euromicro Conference on. IEEE, 334–341.

[2] Mustafa Altun and Marc D Riedel. 2012. Logic synthesis for switching lattices.
IEEE Trans. Comput. 61, 11 (2012), 1588–1600.

[3] Samary Baranov, Ilya Levin, Osnat Keren, and M Karpovsky. 2009. Designing
fault tolerant FSM by nano-PLA. In On-Line Testing Symposium, 2009. IOLTS 2009.
15th IEEE International. IEEE, 229–234.

[4] Anna Bernasconi, Valentina Ciriani, Luca Frontini, Valentino Liberali, Gabriella
Trucco, and Tiziano Villa. 2016. Logic Synthesis for Switching Lattices by De-
composition with P-Circuits. In Digital System Design (DSD), 2016 Euromicro
Conference on. IEEE, 423–430.

[5] Anna Bernasconi, Valentina Ciriani, Luca Frontini, and Gabriella Trucco. 2016.
Synthesis on switching lattices of Dimension-reducible Boolean functions. In
Very Large Scale Integration (VLSI-SoC), 2016 IFIP/IEEE International Conference
on. IEEE, 1–6.

[6] Anna Bernasconi, Valentina Ciriani, Luca Frontini, and Gabriella Trucco. 2017.
Composition of Switching Lattices and Autosymmetric Boolean Function Synthe-
sis. In Digital System Design (DSD), 2017 Euromicro Conference on. IEEE, 137–144.

[7] Yong Chen, Gun-Young Jung, Douglas AA Ohlberg, Xuema Li, Duncan R Stewart,
Jan O Jeppesen, Kent A Nielsen, J Fraser Stoddart, and R Stanley Williams. 2003.
Nanoscale molecular-switch crossbar circuits. Nanotechnology 14, 4 (2003), 462.

[8] Andre DeHon and Benjamin Gojman. 2011. Crystals and snowflakes: building
computation from nanowire crossbars. Computer 2 (2011), 37–45.

[9] Graeme Gange, Harald Søndergaard, and Peter J Stuckey. 2014. Synthesizing
optimal switching lattices. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 20, 1 (2014), 6.

[10] Benjamin Gojman and André DeHon. 2009. VMATCH: Using logical varia-
tion to counteract physical variation in bottom-up, nanoscale systems. In Field-
Programmable Technology, 2009. FPT 2009. International Conference on. IEEE,
78–87.

[11] Yu Huang, Xiangfeng Duan, Yi Cui, Lincoln J Lauhon, Kyoung-Ha Kim, and
Charles M Lieber. 2001. Logic gates and computation from assembled nanowire
building blocks. Science 294, 5545 (2001), 1313–1317.

[12] Muhammed Ceylan Morgül and Mustafa Altun. 2014. Anahtarlamalı Nano
Dizinler ile Lojik Devre Tasarımı ve Boyut Optimizasyonu Logic Circuit Design
with Switching Nano Arrays and Area Optimization. In ELECO.

[13] Muhammed Ceylan Morgul and Mustafa Altun. 2015. Synthesis and optimization
of switching nanoarrays. InDesign and Diagnostics of Electronic Circuits & Systems
(DDECS), 2015 IEEE 18th International Symposium on. IEEE, 161–164.

[14] Muhammed Ceylan Morgul, Furkan Peker, and Mustafa Altun. 2016. Power-
Delay-Area Performance Modeling and Analysis for Nano-Crossbar Arrays. In
VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium on. IEEE, 437–442.

[15] Furkan Peker and Mustafa Altun. 2018. A Fast Hill Climbing Algorithm for
Defect and Variation Tolerant Logic Mapping of Nano-Crossbar Arrays. IEEE
Transactions on Multi-Scale Computing Systems (2018), 1–1.

[16] Wenjing Rao, Alex Orailoglu, and Ramesh Karri. 2007. Logic level fault tolerance
approaches targeting nanoelectronics plas. InDesign, Automation & Test in Europe
Conference & Exhibition, 2007. DATE’07. IEEE, 1–5.

[17] Anish Man Singh Shrestha, Satoshi Tayu, and Shuichi Ueno. 2009. Orthogonal
Ray Graphs and Nano-PLA Design.. In ISCAS. 2930–2933.

[18] G Snider. 2005. Computing with hysteretic resistor crossbars. Applied Physics A:
Materials Science & Processing 80, 6 (2005), 1165–1172.

[19] Greg Snider, P Kuekes, T Hogg, and R Stanley Williams. 2005. Nanoelectronic
architectures. Applied Physics A 80, 6 (2005), 1183–1195.

[20] Greg Snider, Philip Kuekes, and R Stanley Williams. 2004. CMOS-like logic in
defective, nanoscale crossbars. Nanotechnology 15, 8 (2004), 881.

[21] Onur Tunali and Mustafa Altun. 2017. Permanent and transient fault tolerance
for reconfigurable nano-crossbar arrays. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 36, 5 (2017), 747–760.

[22] Onur Tunali and Mustafa Altun. 2017. A Survey of Fault-Tolerance Algorithms
for Reconfigurable Nano-Crossbar Arrays. ACM Comput. Surv. 50, 6, Article 79
(Nov. 2017), 35 pages.

[23] Onur Tunali and Mustafa Altun. 2018. Logic Synthesis and Defect Tolerance for
Memristive Crossbar Arrays. In Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2018.

[24] Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Said Hamdioui, and Koen
Bertels. 2015. Fast boolean logic mapped on memristor crossbar. In Computer
Design (ICCD), 2015 33rd IEEE International Conference on. IEEE, 335–342.

[25] Hao Yan, Hwan Sung Choe, SungWoo Nam, Yongjie Hu, Shamik Das, James F
Klemic, James C Ellenbogen, and CharlesM Lieber. 2011. Programmable nanowire
circuits for nanoprocessors. Nature 470, 7333 (2011), 240–244.

[26] Saeyang Yang. 1991. Logic synthesis and optimization benchmarks user guide:
version 3.0. Microelectronics Center of North Carolina (MCNC).

[27] Bo Yuan and Bin Li. 2014. A fast extraction algorithm for defect-free subcrossbar
in nanoelectronic crossbar. ACM Journal on Emerging Technologies in Computing
Systems (JETC) 10, 3 (2014), 25.

[28] Bo Yuan, Bin Li, Huanhuan Chen, and Xin Yao. 2016. Defect-and Variation-
Tolerant Logic Mapping in Nanocrossbar Using Bipartite Matching and Memetic
Algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 9
(2016), 2813–2826.

Page 17 of 17

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Transactions on Nanotechnology

