
1

Wave Interference Functions for

Neuromorphic Computing

Mostafizur Rahman, Santosh Khasanvis, Jiajun Shi, and Csaba Andras Moritz

Department of Electrical and Computer Engineering, University of Massachusetts Amherst, MA, USA

E-mail: mostafiz@umass.edu, andras@ecs.umass.edu

Abstract— Neuromorphic computing mimicking the

functionalities of mammalian brain holds the promise for

cognitive capabilities enabling new intelligent applications.

However, research efforts so far mainly focused on using analog

and digital CMOS technologies to emulate neural activities, and

are yet to achieve expected benefits. They suffer from limited

scalability, density overhead, interconnection bottleneck and

power consumption related constraints. In this paper, we present

a transformative approach for neuromorphic computing with

Wave Interference Functions (WIF). This is a framework using

emerging non-equilibrium wave phenomenon such as spin waves.

WIF leverages inherent wave attributes for multi-dimensional,

multi-valued data representation and communication, resulting

in reduced connectivity requirements and efficient neural

function implementations. It also yields a compact

implementation of an artificial neuron. Moreover, since WIF

computation and communication are in the spin domain,

extremely low-power operation is possible. Our evaluations

indicate up to 57x higher density, 775x lower power and 2x better

performance when compared to an equivalent 8-bit 45nm CMOS

neuron. Our scalability study using arithmetic circuits for higher

bit-width neuron implementations indicate up-to 63x density,

884x power and 3x performance benefits in comparison to a 32-

bit CMOS equivalent design at 45nm.

Keywords—Neuromorphic Computing; Wave computation;

Multi-valued computation; Spin waves; Wave interference

functions.

I. INTRODUCTION

Brain-like computing has always attracted scientists and
engineers in a quest for supporting intelligent applications. The
new applications can revolutionize the Integrated Circuits (IC)
industry and achieve far-reaching socio-economic impact. With
the progress in nanoscale manufacturing, device, and circuit
technologies the push for neuromorphic computing is
reinvigorated.

To-date, research on hardware implementation of
neuromorphic architectures has been mostly focused on
emulation of neural activities using either analog or digital
CMOS technologies. However, none of these technologies are
intrinsically suitable for neuromorphic implementations.
Analog-CMOS based implementations use analog data
representation and analog components to emulate the
biophysics of neurons; these designs are fully customized, and
suffer from scalability limitations, density and connectivity
bottleneck issues [1], On the other hand, digital CMOS
implementations use Boolean data representation and digital
transistors to emulate the behavior of a neuron at higher level

of abstraction; this results in high power consumption and area
overheads [1].

In this paper, we present Wave Interference Functions
(WIF) framework [2], and show a new transformative
approachusingWIFtowardsneuromorphiccomputing.WIF’s
core components, multi-valued data representation,
communication, and computation allow efficient mapping of a
biological neuron’s functionalities with ultra-low power
operation. WIF uses nanoscale physical components: spin
wave bus and magneto-electric (ME) cells. Information is
encodedinacombinationofspinwave’sattributes– amplitude
and phase. Information processing is achieved through wave
superposition interactions and wave propagation; ME cells are
used for wave generation, detection, amplification and non-
volatile storage. The information encoding in wave attributes
and wave interference allows intrinsic multi-valued data
representation,communicationandcomputation.WIF’smulti-
valued logic constructs for functionality mapping in
combination with these intrinsic physical capabilities enable
compact logic/functionality implementation with minimum
area footprint and reduced connectivity. Moreover, since
neuron implementation in WIF is done in a generic neuron
architecture using logic, arithmetic, input/output functional
units and storage, the design is scalable to higher bit-widths.
Furthermore, the power consumption is extremely low due to
spin-domain based signal propagation and computation.

This paper presents foundational work towards
neuromorphic computing using WIF. Key contributions of this
paper are as follows:

 Extensive detail of WIF’s core aspects, data
representation, communication and computation.
Mathematical formulation of wave interactions.

 Introduction of new multi-valued logic constructs,
arithmetic units, input/output functions and storage
concepts necessary for neuron implementations in WIF.

 Emulation of neuron behavior in WIF targeting scalable
designs.

 Evaluation and benchmarking of WIF neuron
implementation with respect to equivalent digital
CMOS based implementation in 45nm technology.

The paper is organized as follows: Section II presents core
fabric aspects, data representation, and details mathematical
formulation of wave interactions. Section III presents multi-
valued logic constructs, arithmetic unit, input/output functional

This project was supported by DARPA program on Non-volatile Logic,
and Center for Hierarchical Manufacturing (CHM, NSF) at UMass Amherst.

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must

be obtained from the IEEE by sending a request to pubs-permissions@ieee.org

mailto:mostafiz@umass.edu
mailto:andras@ecs.umass.edu
mailto:pubs-permissions@ieee.org

2

units, and non-volatile storage. Section IV details neuron
implementation in WIF. Section V shows evaluation and
benchmarking results. Finally, Section VI draws conclusions.

II. WAVE INTERFERENCE FUNCTIONS

A. Physical Components

Primary physical components in Wave Interference
Functions (WIF) framework [2] are spin wave bus and ME
cell. These components are used to operate on spin wave. Spin
waves [4][12][14] are the collective oscillations of electrons
spins in an ordered spin lattice around the direction of
magnetization in ferromagnetic materials.

Spin Wave Buses (SWB) are ferromagnetic waveguides
that facilitate spin wave propagation and superposition (Fig.
1a). SWB is used in between computational junctions for
information transmission from one physical location to
another. Using SWB, spin waves can be propagated to large
distances at room temperature (from tens of micrometers in
permalloy films [6] to millimeters in yttrium iron garnet
films [7]). SWB also facilitates spin wave superposition. Spin
waves interfering at a junction in SWB result in change in
magnetization at that point. The magnitude of this local
magnetization change is enhanced when the waves are in
phase, and is diminished to a minimum when they interfere
destructively (if they are out of phase with respect to each
other).

The ME cell is a multiferroic heterostructure consisting of a
magnetic element with at least two stable states for
magnetization. It performs several functions – (i) generates and
detects spin waves by converting electric signals into magnetic
domain and vice versa, (ii) amplifies spin waves for logic, and
for signal restoration in spin wave bus, and (iii) stores encoded
information in the state of its magnetization.

When a bias voltage is applied on the top metal electrode
(Fig. 1a), a stress generated in the piezoelectric layer causes
rotation of the easy axis in the piezomagnetic material through
strain-induced anisotropy with two preferred directions (along
or opposite to the new easy axis). Propagating spin waves can
then control magnetization direction of the cell. In the presence
of bias field, when the easy axis rotation changes, it was shown
that the incoming spin wave with phase π results in
magnetization signal along the positive direction of new easy
axis, whereas spin wave with phase 0 results in magnetization
signal along the negative direction [10].

 Spin wave generation is through applying an alternating
voltage at the top metal contact, which results in oscillating
strain in the piezoelectric layer that creates magnetoelastic spin
wave excitation [16]. Detection of spin waves is through the
reverse process from magnetic to electric domain [17].

Similar principle can be applied for spin wave
amplification. By applying alternating voltage (required for 90
degree rotation) at a frequency equal to the incoming spin
wave frequency, the rotated magnetization component can be
amplified to the saturation value of magnetization. The phase
of the incoming spin wave determines the direction of rotation
(along or opposite to rotated direction) and hence preserves the
phase in the output wave[18].

ME cells exhibit nonvolatility, requiring no continuously
applied voltage to keep the magnetization in the reoriented
state [15][3]. Nonvolatility properties (i.e., endurance,
retention) vary based on material choices, dimensions and
integration aspects, and are still under active research.
According to [15], ME cell’s retention and endurance
propertiescanbeashighasSTTRAM’s. Further details about
ME cells can be found in [3][8][12][15][18][19].

B. Multi-valued Data Representation with Waves

Waves present several attributes to encode data such as
phase, amplitude and frequency, thereby providing an
opportunity to develop new schemes for multi-dimensional
compressed data representation. The choice of using any one or
a combination of the wave characteristics is driven by the
capabilities of the physical components used to build the
computational system. In this paper, we consider only two
phases either0orπfor data encoding, since the ME cells used
for spin wave detection are designed to differentiate these
phases.

Here, we introduce the notations that will be used in

subsequent sections for multi-valued logic design. A spin wave

Table 1. Quaternary (Radix-4) Logic Encoding

Logic Value
Wave

Representation

Wave Attributes

(Amplitude, Phase)

0 �̃�0 = 3𝐴𝑒𝑖0 (3A, 0)

1 �̃�1 = 𝐴𝑒𝑖0 (A, 0)

2 �̃�2 = 𝐴𝑒𝑖𝜋 (A, π)

3 �̃�3 = 3𝐴𝑒𝑖𝜋 (3A, π)

Fig. 1. a) WIF Physical fabric components to operate on spin waves; and b) Illustration of quaternary data representation

(radix-4) with waves, encoded in the combination of phase and amplitude.

3

is denoted as �̃�; and is represented using polar co-ordinates to
incorporate both its amplitude (a) and phase (φ) compactly as
follows:

�̃� = 𝑎𝑒𝑖𝜑 = 𝑎(𝑐𝑜𝑠 𝜑 + 𝑖 𝑠𝑖𝑛 𝜑). (1)

Thus, any wave can be interpreted as having amplitude a
when the phase is 0, and –a whenthephaseisπatthepointof
interference.When a phase other than 0 and π is employed,
either the real or imaginary component of the notation above
will need to be used as required.

To represent data in radix-r number system, we need r/2
distinct amplitude values if r is even, and (r+1)/2 amplitude
values if r is odd, in conjunction with aforementioned 2 phase
values. For example, for binary data representation (radix-2)
we need a single amplitude level A. The phase encodes binary
data (1-bit) with logic 0 and logic 1, assigned to waves with
initial phase 0 and π respectively. For quaternary data
representation (radix-4), we use two amplitude levels (A, 3A) in
conjunction with two phase values (0,π) toget four different
combinations. Each combination is assigned to a logic value
(see Fig. 1b and Table 1). Alternative combinations for
amplitude and phase may also be used. By contrast,
conventional charge-based digital computational systems are
capable of using only the presence/absence of charge for one-
dimensional binary information representation.

C. Interference Function

Wave interference is the fundamental operation in the WIF
approach. Spin waves interfering at a given point exhibit linear
superposition behavior [6][14]. Elementary spin wave circuit
operation has been experimentally demonstrated at room
temperature[4]. Here, the focus is on a new model of
computation with waves departing from conventional Boolean
and Majority approach. The Interference Function I of n input

waves �̃�0, �̃�1, … , �̃�𝑛−1 is defined as follows:

𝐈(�̃�0, �̃�1, … , �̃�𝑛−1) = �̃�0 + �̃�1 + ⋯ + �̃�𝑛−1

 = 𝑎0𝑒𝑖𝜑0 + 𝑎1𝑒𝑖𝜑1 + ⋯ + 𝑎𝑛−1𝑒𝑖𝜑𝑛−1 .
(2)

The result of this Interference Function is a spin wave �̃�,
whose individual wave attributes are denoted as follows:

�̃� = 𝑎𝑦𝑒𝑖𝜑𝑦 = 𝐈(�̃�0, �̃�1, … , �̃�𝑛−1)

where, 𝑎𝑦 = I𝐴(�̃�0, �̃�1, … , �̃�𝑛−1)

 𝜑𝑦 = I𝜑(�̃�0, �̃�1, … , �̃�𝑛−1).
(3)

In general for n input waves, if the amplitude of any wave

�̃�𝑗 is aj = wj.A, where wj represents a weight in multiples of

unit-amplitude A, then the Interference Function result encodes
the following information:

I𝜑(�̃�0, �̃�1, … , �̃�𝑛−1) = {
𝜋; 𝑖𝑓 ∑ 𝑤𝑗𝐴𝑒𝑖𝜋 > ∑ 𝑤𝑘𝐴𝑒𝑖0

0; 𝑒𝑙𝑠𝑒

→ weighted-majority decision

 I𝐴(�̃�0, �̃�1, … , �̃�𝑛−1) = |∑ 𝑤𝑘𝐴𝑒𝑖0| − |∑ 𝑤𝑗𝐴𝑒𝑖𝜋| .

(4)

The output phase encodes the weighted majority decision
of all the input wave phases, and the amplitude represents the
weighted difference of the number of input waves that are out-
of-phase with respect to each other. Thus the Interference

Function encodes all the necessary information about the
inputs in a compressed manner.

Fig. 2 shows an example of multi-valued logic (Threshold
function) implementation using Interference Functions in WIF.
The multivalued threshold logic implementation in Fig. 2 takes
two logical inputs (x,y) and outputs a constant value when one
input is greater than the other. The threshold output (𝑥𝑦

𝑟−1) is

logically defined as:

𝑥𝑦
𝑟−1 = {

𝑟 − 1, when 𝑥 ≥ 𝑦
0, 𝑒𝑙𝑠𝑒

, 𝑥, 𝑦 ϵ{0,1,…,r-1}. (5)

For radix–r it is expressed in terms of Interference
Function as:

�̃�y
r−1 = I[(𝑟 − 1)I1

φ
(−�̃�, �̃�, �̃�𝑟/2)], (6)

where (r-1) represents either r-1 copies of interference

output at I1 or amplification (using ME cell); �̃�, �̃�are input
waves corresponding to logical inputs x, y respectively; and

�̃�𝑟/2 is a reference wave corresponding to logic level r/2.

Interference Function I1 produces an output wave of positive
phase when (𝑥 ≥ 𝑦) , and generates a negative phase
otherwise. To obtain the correct output, here we use an
amplification ME cell such that the output wave has a phase
equal to the incoming wave, but the amplitude is always pulled
up to the highest supported value. Fig. 2 shows the truth table
for Threshold operation and physical implementation in WIF
for quaternary logic (r = 4).

III. WIF LOGIC CONSTRUCTS, ARITHMETIC, STORAGE AND

INPUT/OUTPUT UNITS FOR NEUROMORPHIC ARCHITECTURES

In our previous work [2], we have detailed multi-valued
algebra, multi-valued operator implementations in WIF, and
shown arithmetic functions using them. Quaternary logic
encoding can be achieved by using weighted Interference
Functions. Details of conversion between binary to quaternary
values can be found in [19]. Here, we introduce the multi-

Fig. 2. Truth table and physical implementation for Threshold

Operator. ME cell labeled‘L2’and‘3A’generate and amplifies

waves of logic 2 and amplitude 3A respectively. Here,λ is the

spin wavelength and n is an integer. Unless specified explicitly,

allSWBshavelengthsequaltoanintegralmultipleofλ.

Mostafizur
Sticky Note

4

valued operators, arithmetic and functional units necessary for
neuromorphic architectures in WIF.

A. Multi-Valued Logic Constructs

1) Truncat ed Difference Operator

This operator outputs the difference between two inputs
when a condition is satisfied. The notation is x Ξ y, and the
operation is defined as:

𝑥 Ξ 𝑦 = {
𝑥 − 𝑦 , when 𝑥 > 𝑦

0, 𝑒𝑙𝑠𝑒
,

 𝑥, 𝑦 ϵ {0, 1, … , 𝑟 − 1}.

(7)

This can be expressed with Interference Function as

�̃� Ξ �̃� = 𝐈(�̃�, −�̃�, �̃�0), (8)

where, �̃�, �̃� are input waves corresponding to logical inputs

x, y respectively; and �̃�0 is a reference wave corresponding to
logic 0. The truth table and the physical implementation for
Truncated Difference operator are shown in Fig. 3a for
quaternary logic. The difference operation is performed at the
junction of incoming waves. In order to achieve the correct
output, the resultant wave amplitude after interference is

always truncated to 3A if it is greater than 3A. This truncation
may be achieved by either designing the spin wave bus and
ME cells to accommodate this requirement or through external
electrical circuits. The same assumption is considered for other
multi-valued operators and circuit implementations as well.

2) Min Operator

The Min operator (x ∙ y) in multi-valued logic is analogous
to the Boolean AND operator. It is defined as follows:

𝑥 ∙ 𝑦 = {
𝑥, 𝑥 < 𝑦

𝑥 − (𝑥 − 𝑦), 𝑒𝑙𝑠𝑒

𝑥, 𝑦 ϵ {0, 1, … , 𝑟 − 1}.

(9)

The Truncated Difference operator can be used to realize
the above output conditions as x ∙ y = x Ξ(x Ξy). Notice that in
equation (13), for the condition x ∙ y = y, the output is re-
expressed as x ∙ y = x – (x – y) to enable implementation with
Truncated Difference operator. The functional representation in
terms of Interference Function is:

Min(�̃�, �̃�) = �̃� Ξ (�̃� Ξ �̃�) = 𝐈[�̃�, −(�̃� Ξ �̃�), �̃�0], (10)

where �̃�, �̃� are input waves corresponding to logical inputs

Fig. 3. Truth table and physical implementation for a) Truncated Difference Operator; b) Min Operator; and c) Max Operator. The

intermediateMEcelllabeled‘3A’generatesaspinwavewithphaseequaltoinputphaseandconstantamplitude3A.Otherintermediate

MEcellslabeled‘L0’and‘L3’generatewavescorresponding to logic 0 and logic 3 respectively.Here,λisthespinwavelengthandn is an

integer.Unlessspecifiedexplicitly,allSWBshavelengthsequaltoanintegralmultipleofλ.

Fig. 4. Truth table and physical implementation for cyclic operators, a) Carry Operator; b) Mod-Sum Operator. The

intermediateMEcellslabeled‘L0’and‘L2’generatewavescorrespondingtologic0andlogic2respectively.Here,λisthe

spin wavelength and n isaninteger.Unlessspecifiedexplicitly,allSWBshavelengthsequaltoanintegralmultipleofλ.

5

x, y respectively; and �̃�0 is a reference wave corresponding to
logic 0. Fig. 3c shows the truth table and the WIF physical
implementation of Min operator.

3) Max Operator

The max operator (x + y) in multi-valued logic is analogous
to the Boolean OR, defined as follows:

𝑥 + 𝑦 = {
𝑥, 𝑥 > 𝑦

𝑥 + (𝑦 − 𝑥), 𝑒𝑙𝑠𝑒

 𝑥, 𝑦 ϵ {0, 1, … , 𝑟 − 1}.

(11)

The functional representation in terms of Interference
Function is

Max(�̃�, �̃�) = �̃� + (�̃� Ξ �̃�) = 𝐈[�̃�, (�̃� Ξ �̃�), �̃�𝑟−1], (12)

where �̃�𝑟−1 is a reference wave corresponding to logic
value r-1. Fig. 3b shows the physical implementation.

4) Cyclic Operator

The cyclic operator is also known as mod-sum
operator; it performs XOR-like operation in the multi-
valued domain. The mod-sum operatorisdefinedas:

𝑥 ⊕ 𝑦 = (𝑥+𝑎𝑑𝑑𝑦) 𝑚𝑜𝑑 𝑟,

𝑥, 𝑦 ϵ {0, 1, … , 𝑟 − 1}.
(13)

Here, ‘+add’ represents arithmetic addition of logic inputs.
To implement this function, we define a new operator called
Carry operator(denotedby‘+carry’):

𝑥 +carry 𝑦 = {
1, if 𝑥 +𝑎𝑑𝑑 𝑦 > 𝑟 − 1
0, 𝑒𝑙𝑠𝑒

𝑥, 𝑦 ϵ {0, 1, … , 𝑟 − 1}.

(14)

The Carry operator is implemented using Min operator as
follows:

�̃�+carry�̃� = Min[𝐈(�̃�, �̃�, �̃�0), �̃�1]. (15)

The output of I(�̃�, �̃�, �̃�0) represents (x +add y) – r–1, if x

+add y > r–1; and 0 otherwise. Therefore, a non-zero output is
obtained only when x +add y > r–1. The Min operation of this

output with �̃�1 provides the binary Carry output.

The Cyclic operator is then implemented as:

�̃� ⊕ �̃� = 𝐈[�̃�, �̃�, �̃�0, (�̃�+add�̃�)r
r−1 , −(�̃�+carry�̃�)]. (16)

Here, (�̃�+add�̃�)r
r−1 implements the Lower Threshold

operation, whose output is r–1 if x +add y ≤ r–1, and 0
otherwise. Sample test vectors and outputs from Carry and
Mod-sum operator are shown in truth tables in Fig. 4a and Fig.
4b.

5) Multiplexer

A 2:1 Multiplexer function in WIF follows the following
equation:

𝑂𝑢𝑡 = 𝑀𝑎𝑥 (𝑀𝑖𝑛 (𝑥, 𝑠𝑒𝑙𝑒𝑐𝑡), 𝑀𝑖𝑛(𝑦, 𝑠𝑒𝑙𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅)

W here Out is the Max of two Min operations; the Min

operations take as inputs (x, select) and (x, 𝑠𝑒𝑙𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅). The
multiplexer implementation in WIF is shown in Fig. 5.
Similarly, a r:1 multiplexer can be implemented using r Min
and r-1 Max operators.

Fig. 5. Quaternary 2:1 Multiplexer implementation in WIF

Fig. 6. Quaternary full adder implementation in WIF for: a) Carry function (Cout); and b) Sum function (Sout).

6

B. Quaternary Full Adder Design

As mentioned earlier and in [2][5], the use of multi-valued
operators for circuit design reduces complexity significantly
and provides a framework for arbitrary logic/arithmetic
implementation. The quaternary full adder circuit operates on
two quaternary operands (A, B) and a binary carry-in (Cin). It
has two outputs representing the result of the addition – the
quaternary least significant digit (Sout) and the binary carry-out
(Cout). The same full adder design can be extended to
implement high bit-width adders. The conditions for binary
carry generation are:

𝐶𝑜𝑢𝑡 = {
1, if 𝐴 +𝑎𝑑𝑑 𝐵 +𝑎𝑑𝑑 𝐶𝑖𝑛 ≥ 𝑟
0, 𝑒𝑙𝑠𝑒

𝐴, 𝐵 ϵ {0, 1, … , 𝑟 − 1} and 𝐶𝑖𝑛ϵ {0, 1}.

(17)

Here r = 4 for quaternary logic, and ‘+add’ represents
arithmetic addition of logic inputs. The above operation is
realized using 3-input Carry operator as:

�̃�𝑜𝑢𝑡 = �̃�+carry�̃�+carry�̃�𝑖𝑛 = Min[𝐈(�̃�, �̃�, �̃�𝑖𝑛), �̃�1], (18)

where �̃�, �̃�, �̃�𝑖𝑛 are input waves corresponding to logical

inputs A, B, Cin respectively; �̃�𝑜𝑢𝑡 is the output wave

corresponding to output Cout; and �̃�1 is a reference wave
corresponding to logic 1.

The quaternary full adder sum output (Sout) conditions are:

{
 A +𝑎𝑑𝑑 B +𝑎𝑑𝑑 Cin − 𝑟 , if A +𝑎𝑑𝑑 B +𝑎𝑑𝑑 Cin > 𝑟 − 1

A +𝑎𝑑𝑑 B +𝑎𝑑𝑑 Cin, 𝑒𝑙𝑠𝑒
 (19)

Here A, B ϵ {0,1,2,3} and Cin ϵ {0, 1} for quaternary adder.
This is expressed using 3-input Cyclic operator as follows:

𝑆𝑜𝑢𝑡 = �̃� ⊕ �̃� ⊕ �̃�𝑖𝑛 = 𝐈(�̃�, �̃�, �̃�𝑖𝑛 , �̃�r
r−1 , −�̃�𝑜𝑢𝑡),

whe re �̃� = (�̃�+𝑎𝑑𝑑 �̃�+𝑎𝑑𝑑�̃�𝑖𝑛).
(20)

The WIF implementation of equations (24) and (26) are
shown in Fig. 6.

C. Input/Output Logic for Data Conversion Between Binary

and r-ary Domains & Non-Volatile Storage

In addition to computational logic, WIF's intrinsic
properties can be utilized for data conversion between binary

and multi-valued domains. This data conversion technique
along with non-volatile ME cells are used for latch
implementation as discussed in Section V.

1) Binary to Quaternary Conversion:

 Binary to multi-valued conversion is achieved by using
weighted interference functions. For binary to r-ary (i.e. radix-
r) conversion, each binary digit isweighted according to its’
least significant bit position. For binary inputs (An−1, ..., A1,
A0), the weighted interference function to convert to r-ary
output Y is:

�̃� = 𝐈(20�̃�0, 21�̃�1, 22�̃�2, … , 2n−1�̃�𝑛−1), where n is the

number of bits.

Here, �̃�𝑖 is the input wave corresponding to bit Ai. The
weights can be implemented either with amplification ME cells
or by replicating the particular input wave. The same principle
can be applied to convert binary data into quaternary. All
possible combinations for two-bit binary inputs, and their
corresponding quaternary output is shown in Table 2. The WIF

implementation of binary to quaternary conversion logic is
shown in Fig. 7a, where the weight for A1 is implemented by
replication.

2) Quaternary to Binary Conversion:

 The following principle is used for converting r-ary logic
state to equivalent binary using WIF. By implementing
majority function based on the phase of the multi-valued logic
state, an r-ary input (A) can be decomposed to binary outputs
(On−1O1O0), where n represents number of bits and 2

n
 = r.

The LSB (O0) is computed first using an output ME cell and
external circuitry, which generates constant amplitude with

Fig. 7. a) Binary to Quaternary conversion. b) Quaternary to binary conversion logic; Binary most

significant bit generation from phase information of the quaternary state (left), binary least significant bit

generation by interference logic (right).

Table 2 . Binary and quaternary logic states and data

representations

Binary

Value

A1A0

Binary Spin

Wave

Equivalent

Quaternary

Logic State

Quaternary

Spin Wave

Representation

00 𝐴𝑒𝑖0, 𝐴𝑒𝑖0 0 3𝐴𝑒𝑖0

01 𝐴𝑒𝑖0, 𝐴𝑒𝑖π 1 𝐴𝑒𝑖0

10 𝐴𝑒𝑖π, 𝐴𝑒𝑖0 2 𝐴𝑒𝑖𝜋

11 𝐴𝑒𝑖π, 𝐴𝑒𝑖π 3 3𝐴𝑒𝑖𝜋

7

either positive or negative phase. The remaining output bits
(Od−1….O1) are generated with similar constant amplitude
generating ME cells. The interference function is:

�̃� = 𝐈(�̃�, −(2n − 1)�̃�𝑛−1, … , −(2n − i +

1)�̃�𝑛−𝑖+1), where n is the number of bits.

Here, �̃�𝑖 represents the output wave corresponding to

output bit Oi, and �̃� is the input quaternary wave. Using these
rules we can convert quaternary logic to binary. A single
quaternary input (A) will have two binary outputs (O1O0). The
binary MSB output (O1) is 1 only for quaternary input states 2
and 3 (Table 2), and 0 for quaternary input states 0 and 1. The
phase dependent ME cell along with external CMOS circuitry
generates spin wave with positive or negative phase and
constant amplitude (Fig. 7b (left)), which is the MSB bit (O1)
for binary representation. The LSB (O0) is generated by
subtracting the weighted MSB (O1) from the quaternary input
(A) as shown in Fig. 7b (right).

3) Non-Volatile Storage

As discussed earlier in Section II and in [2][12][5][3], ME
cells can be used as non-volatile storage elements. Upon
switching, depending on the energy barrier between two
magnetization states, ME cells can preserve their state
(magnetization state 0 or π) for very long time without
requiring any external power supply. This property of ME cell
is utilized along with data conversion units to implement latch
for weight update in neuron circuit, as discussed in next
section.

IV. NEURON IMPLEMENTATION IN WIF

Key characteristics of biological neuron’s computation
include event-based processing on analog data, parallel
computations, redundancy, connectivity, adaptation and
learning, under extreme energy constraints. To map these
characteristics, research direction so far has primarily focused
on implementations using analog and digital CMOS. Analog
CMOS implementations, while being compact, suffer from
scalability and flexibility issues since analog CMOS
components (e.g., capacitors, analog transistors) scale poorly,
and are usually fully customized for each technology/design. In

addition, they also face density and connectivity challenges [1].
On the other hand, digital CMOS components scale
aggressively, and digital CMOS neuromorphic architectures
are flexible in terms of design (support modular design,
reconfiguration, memory augmentation, etc.). However, digital
CMOS implementations use Boolean data representation. As a
result, various levels of abstraction are used to represent
equivalent behavior of a neuron, which is very inefficient
resulting in density and power overhead.

In this section we present a neuron implementation in the
WIF framework, which closely maps some of the key
computational characteristics of biological neurons. By
harnessing intrinsic properties of nanoscale components for
multi-valued data representation, communication and
computation, and by designing core logical constructs to
achieve arithmetic operations efficiently, the WIF based
neuron implementation solves CMOS challenges and achieves
orders of magnitude benefits in comparison. Moreover, since
all computations are performed in the spin domain, extreme
low power operations are achieved for neuron implementation
in WIF compared to CMOS. Analog implementation benefits
are matched by using multi-valued data representation and
computation in a compact form, while digital implementation
benefits are matched by using emerging nanoscale components
in a flexible framework that uses logic, arithmetic, input/output
and storage units. Connectivity requirements are significantly
lowered in WIF-based implementation, since multi-valued
communication is achieved through spin waves, and multi-
valued logic and arithmetic functions are achieved in a
compact form through wave interference functions.

The neuron implementation in WIF is shown in Fig. 8; it
performs the integrate-and-fire operation. Similar to biological
neuron, the weighted excitatory/inhibitory inputs are integrated
over time and a spike is fired if the integrated sum is greater
than spike threshold. The input and output of the neuron
circuit shown is in quaternary multi-valued WIF, and all
computation is done with quaternary data. The neuron
implementation in Fig. 8 uses a multiplexer for input selection,
adder block for integration, threshold comparator for
comparison, and input/output conversion units together for
latching and feedback. Inter-block communication is achieved

Fig. 8. Neuron implementation in WIF. The block diagram shows implementation details and interconnection. All input/output

communication is through SWBs, data representation and computations are done in Quaternary logic. Summation results are stored in

ME cells by Quaternary to Binary conversion and storage.

8

through spin-wave buses. This quaternary data based neuron
implementation can be extended for any r-ary data based
neuron implementation in WIF.

At a functional level the neuron implementation follows the
equation:

𝑉𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 𝑉𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝑆+ − 𝑆− − 𝜆

where V represents membrane potential (integration result).
Vprsent is the potential at time t and Vprevious is the potential at
time t-1. S+ and S- are weighted excitatory and inhibitory
inputs, and λ is the reset input. If Vpresent exceeds a threshold ϴ,
a spike is generated and Vpresent is set to an initializing value.

The input and output of neuron implementation in Fig. 8
are through spin-waves, and data encoding follows quaternary
representation discussed in Section II. A 4:1 Multiplexer is
used to select from three inputs S+, S-, and λ. Synaptic Inputs
(S) from other neurons are passed through the multiplexer
using Identity and Complementary operators [2][5] to represent
excitatory (S+) or inhibitory (S-) inputs. Each of the S+, S-, and
λ inputs are 4-digit wide. An 8-digit adder is used to add two 4-
digit quaternary operands, and to handle overflow under worst-
case conditions. Although the full width 8-digit adder is not
necessary for this design, it was incorporated for equivalent
comparison with an industrial design [9]. Storing the
summation results for integration over time is a key
requirement in a neuron circuit. We use the ME cell’s non-
volatility to meet this requirement. Since ME cells can only
retain the magnetization state (phase 0 or π), the quaternary
data needs to be converted to Binary. The 8-digit Quaternary to
Binary conversion unit shown in Fig. 8 is used for this purpose.
Whenever, a new synaptic input is available the binary data is
converted back to quaternary using the 8-digit Binary to
Quaternary conversion unit, for summation purposes. The
integration result is compared with the threshold ϴ using 4-
digit Threshold comparator. In this digit-wise comparison,
most significant digit is compared with that of ϴ. The same
Threshold comparator can be extended with Min, Max
operators to do any data comparison.

The 4:1 Multiplexer used in Fig. 8, is extended from the
based 2:1 Multiplexer design presented in Section IIIA. The 8-
digit adder uses 8 quaternary Full-Adders (Section IIIB) in a
ripple carry design. The data conversion units used are
extended to for 8-digits, and follow the same design principle
as presented in Section IIIC. The threshold comparator is an
extension of the 1-digit comparator discussed in Section IIC.
Since the WIF-framework based neuron design is component
centric and each component can be extended to support higher-
digits and any r-radix based implementations, this design is
very flexible. In addition, the core neuron circuit can be
extended with ME cell based memory components or a spin-
wave based memory grid [5] to support weight adaptation and
learning.

V. BENCHMARKING VS. CMOS NEURONS

To evaluate the potential of this Neuromorphic cell
architecture implementation in WIF, extensive benchmarking
was done with respect to binary CMOS. The neuron circuit
presented in the previous section that operates on 4-digit inputs

was compared against equivalent Digital CMOS based
industrial design [9] with 8-bit inputs at 45nm. In addition, to
study the scalability potential of neuromorphic architecture
implementation in WIF, we have studied the scalability aspects
of core arithmetic circuits, and benchmarked with equivalent
CMOS; 4-, 8-, 16- and 32-bit ripple carry adders were designed
and compared against equivalent CMOS at 45nm.

For WIF evaluation the parameters were based on
experimental evidence and numerical simulations [12][7][3]:
The wavelength of the spin wave was taken to be 100nm.
Accordingly, ME cell dimensions of 100nmx100nm were used,
and the spin wave bus length was considered in multiples of
100nm. The group velocity of the spin waves was assumed to
be 10

4
 m/s. The switching delay of the ME cell was taken to be

100ps. The total delay of a WIF circuit was calculated as the
sum of ME cell switching delay and propagation delay of the
spin waves along the longest path (critical path delay).

Energy consumption in WIF is mainly attributed to ME cell
switching for generating new waves, amplification and
latching. Spin wave propagation does not involve any physical
movement of charge particles. Therefore, total energy of
circuits is calculated based on the number of ME cells (NME)
and the energy consumption per ME cell (EME):

E = NME × EME

The ME cell structure represents a parallel plate capacitor
consisting of a non-magnetic metallic layer (e.g. Al), a layer of
piezoelectric material (e.g. PZT), and a conducting
magnetostrictive material (e.g. Ni). The total energy consumed
by ME cell per switch can be calculated as follows [4][14]:

𝐸𝑀𝐸 =
𝐶𝑉2

2
=

𝜖0𝜖𝑟 𝐴𝑉𝜋 6⁄
2

2𝑑

Where 𝜖0 is the vacuum permittivity, 𝜖𝑟 is the relative
permittivity of the piezo-electric, A is the surface area of the
ME cell, d is the thickness of the dielectric layer, 𝑉𝜋 6⁄ is the

voltage required for 30 degree magnetization rotation. In order
to provide high-frequency spin wave excitation, the thickness
of the piezoelectric layer should be adjusted to the spin wave

Table 3. Comparison of Neuron Implementation in WIF

vs. CMOS

Area (µm2) Delay (ps) Power (µW)

CMOS WIF CMOS WIF CMOS WIF

16-bit
Neuron

Core

1785 30.9 1480 726 18000 23.2

Table 4. Scalability Study of High-Bit Width Arithmetic

Circuits For Neuromorphic Computation

Area (µm2) Delay (ps) Power (µW)

CMOS WIF CMOS WIF CMOS WIF

16-bit

Adder
1700 27 1400 515 14600 17

32-bit

Adder
3410 54 2800 915 29200 33

WIF Parameters: [λ=100nm,ME cell area = λxλ,ME delay =

100ps, Wave velocity = 104 m/s, ME switching power =100nW]

9

frequency (e.g. d = 0.8µm for resonance frequency of 1GHz).
Taking the following data: 𝜖0 = 8.854 × 10

−12
F /m, 𝜖𝑟 = 1700

for PZT, A = 100nm ∗ 100nm, d = 0.8µm, 𝑉𝜋 6⁄ = 0.4MV/m ×

0.8µm = 0.32V, we would require approximately 10aJ of
energy for ME cell switching. The energy per switch scales
proportional to the size of the ME cell and may be reduced
further by optimizing the material structure and switching
dynamics.

Area of WIF circuits was calculated based on ME cell
dimensions and patterning area required for SWB with the
above assumptions. All quaternary adders were designed using
multi-valued operators, and followed the design principles
illustrated previously. CMOS designs for the adders were
defined in Verilog and synthesized using Synopsys Design
Compiler in 45nm node using North Carolina State University
(NCSU) Product Development Kit (PDK). Performance and
power for CMOS were calculated using HSPICE simulations.
The benchmarking results are shown in Table 3 and Table 4.

Promising benefits are achieved across all metrics for WIF-
based implementations. As shown in Table 3, WIF based 4-
digit Quaternary neuron implementation achieves 57x density,
775x power and 2x performance benefits over equivalent 8-bit
Boolean Digital CMOS-based design at 45nm technology
node. Our scalability to higher bit-width study (see Table 4)
indicates that even more substantial benefits can be attained if
the neuron implementation is extended to 16-digits. The 16-
digit quaternary full adder shows 63x density, 884x lower
power and 3x performance improvement vs. 32-bit CMOS.

The substantial improvement in power consumption is due
to the low ME cell switching power, and overall low-energy
computation and communication in WIF without charge
transfer. The density benefits are primarily due to WIF’s
inherent support for multi-valued logic. The implementation
through multi-valued operators leads to compact circuits.
Reduced communication requirements are achieved through
multi-valued wave propagation.

VI. CONCLUSION

We presented a new approach towards neuromorphic
computing using a spin-domain multi-valued WIF framework.
The neuron circuit presented, leverages intrinsic properties of
WIF’s nanoscale components for multi-valued data
representation, communication and computation, as well as its
core logical constructs to achieve functionality equivalent of a
biological neuron. Significant benefits were projected across
all aspects; the WIF framework based neuron implementation
showed 57x, 775x and 2x benefits in terms of area, power, and
performance compared to an equivalent 45nm CMOS design.
The scalability studies for higher bit-width neuromorphic
architectures indicated that additional benefits can be attained
with bit-width scaling; the 16-digit quaternary adder design in
WIF showed 63x density, 884x power and 3x performance
benefits compared to a 32-bit CMOS adder at 45nm
technology. The transformative new approach for
neuromorphic computing presented in this paper, can provide
the basis for novel neuromorphic architectures.

REFERENCES

[1] A.S.Cassidy,J.Georgiou,andA.G.Andreou,“Designofsiliconbrains

in the nano-CMOS era: Spiking neurons, learning synapses and neural
architecture optimization”, Neural Networks, vol. 45, pp. 4-26, Sept.
2013.

[2] S. Khasanvis, M. Rahman,S.N.Rajapandian,andC.A.Moritz,“Wave-
based Multi-valued Computation Framework”, in Proceedings of
IEEE/ACM International Symposium on Nanoscale Architectures
(NanoArch) , pp. 171-176 , 2014

[3] A. Khitun, and K. L. Wang,. Non-volatile magnonic logic circuits
engineering. Arxiv.org, 2010

<http://arxiv.org/abs/1012.4768>

[4] P.Shabadi,S.N.Rajapandian,S.Khasanvis,andC.A.Moritz,“Design
of spin wave functions-basedlogiccircuits,”SPIN, vol. 2, no. 3, Article
1240006, World Scientific Publishing Company, 2012.

[5] S. Khasanvis, M. Rahman, P. Shabadi and C. A. Moritz,
“Unconventional Computation with Spin Wave Functions”,
Nanomagnetic and Spintronic Devices for Energy Efficient Computing.
Wiley Publishers (New York 2014) (Book Chapter- In Press)

[6] M. Covington, T. M. Crawford, and G. J. Parker, “Time-resolved
measurement of propagating spin waves in ferromagnetic thin films,”
Phys. Rev. Lett., vol. 89, pp. 237202-1–237202-4, 2002.

[7] M. P. Kostylev, A. A. Serga, T. Schneider, B. Leven, and B.
Hillebrands, “Spin-wave logical gates,”Appl. Phys. Lett., vol. 87, pp.
153501-1– 153501-3, 2005.

[8] P. Shabadi, A. Khitun, P. Narayanan, M. Bao, I. Koren, K. L. Wang, and
C. A. Moritz, "Towards logic functions as the device," in proceedings of
IEEE/ACM International Symposium on Nanoscale Architectures
(NanoArch), pp.11,16, 17-18 June 2010.

[9] J. Seo, et. al., "A 45nm CMOS neuromorphic chip with a scalable
architecture for learning in networks of spiking neurons," IEEE Custom
Integrated Circuits Conference (CICC),, vol. 1, no. 4, pp. 19-21 Sept.
2011

[10] A. Khitun, M. Bao, and K. L. Wang, "Spin wave magnetic nanofabric: A
new approach to spin-based logic circuitry," IEEE Transactions on
Magnetics, vol. 44, no. 9, pp.2141-2152, Sept. 2008.

[11] D.M.Miller,andM.A.Thornton,“Multiplevaluedlogic:Conceptsand
representations,” Synthesis Lectures on Digital Circuits and Systems
Series, Morgan & Claypool, 2008.

[12] P. Shabadi, A. Khitun, K. Wong, P. K. Amiri, K. L. Wang, and C. A.
Moritz, "Spin wave functions nanofabric update," in proc. of
IEEE/ACM International Symposium on Nanoscale Architectures
(NanoArch), pp.107-113, 8-9 June 2011.

[13] T. Schneider, A. A. Serga, B. Leven, B. Hillebrands, R. L. Stamps, and
M. P. Kostylev, “Realization of Spin Logic Gates,” Applied Physics
Letters. vol 92, 022505, 2008.

[14] P. Shabadi and C. A. Moritz, "Post-CMOS hybrid spin-charge
nanofabrics," in proceedings of IEEE Conference on Nanotechnology
(IEEE-NANO), pp.1399-1402, 15-18 Aug. 2011.

[15] K.L.WangandP.K.Amiri,“NonvolatileSpintronics:Perspectiveson
Instant-On Nonvolatile Nanoelectronic Systems,” SPIN, vol. 2, no. 2,
Article 1250009, World Scientific Publishing Company, 2012.

[16] W.Yu, J.A.Bain,W.C.Uhligand J.Unguris, “The effect of stress-
induced anisotropy in patterned FeCo thin-film structures,” J. Appl.
Phys., vol. 99, no. 8, p. 8B706, Apr. 2006.

[17] S. Cherepov et al., "Electric-field-induced spin wave generation using
multiferroic magnetoelectric cells," Appl. Phys. Lett., vol. 104, no. 8, pp.
082403, Feb. 2014.

[18] A.Khitun,D.E.NikonovandK.L.Wang,“Magnetoelectricspinwave
amplifierforspinwavelogiccircuits,”J. Appl. Phy., vol. 106, no. 12, p.
123909, Dec. 2009.

[19] S. Khasanvis, M. Rahman, C. A. Moritz, "Unconventional
Nanocomputing with Physical Wave Interference Functions,"
Nanomagnetic and Spintronic Devices for Energy Efficient Memory and
Computing, Eds. S. Bandyopadhyay and J. Atulasimha, Wiley, 2015. In
Press

