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Abstract

Front-end instruction delivery accounts for a significant
fraction of energy consumption in dynamically scheduled
superscalar processors. Different front-end throttling tech-
niques have been introduced to reduce the chip-wide en-
ergy consumption caused by redundant fetching. Hardware-
based techniques, such as flow-based throttling, could reduce
the energy consumption considerably, but with a high per-
formance loss. On the other hand, compiler-based IPC-
estimation-driven software fetch throttling (CFT) techniques
result in relatively low performance degradation, which is de-
sirable for high-performance processors. However, their en-
ergy savings are limited by the fact that they typically use a
predefined fixed low IPC-threshold to control throttling.

In this paper, we propose a Compiler-based Adaptive
Fetch Throttling (CAFT) technique that allows changing
the throttling threshold dynamically at runtime. Instead of
using a fixed threshold, our technique uses the Decode/Issue
Difference (DID) to assist the fetch throttling decision based
on the statically estimated IPC. Changing the threshold dy-
namically makes it possible to throttle at a higher estimated
IPC, thus increasing the throttling opportunities and result-
ing in larger energy savings. We demonstrate that CAFT
could increase the energy savings significantly compared to
CFT, while preserving its benefit of low performance loss.
Our simulation results show that the proposed technique
doubles the energy-delay product (EDP) savings compared
to the fixed threshold throttling and achieves a 6.7% average
EDP saving.

1. Introduction

Power consumption has emerged as a significant factor in
computer architecture. Out-of-order processing of instruc-
tions, speculative execution, and register renaming tech-
niques improve performance significantly compared to in-
order execution, but they also introduce significant energy
overhead necessary to keep track of all the instructions and
their dependencies.

A large fraction of power in modern high-performance
processors is dissipated by the front-end of the pipeline, in-
cluding the fetch and decode units. Conventional super-
scalar processors attempt to maximize the number of “in-
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flight” instructions at all times in order to achieve high
performance. Following a branch misprediction, they be-
gin fetching at full speed and continue doing so until the
next branch misprediction flushes the pipeline or until the
issue queue (or re-order buffer) is full. No matter how low
the instruction-level parallelism (ILP) may be, instructions
are still fetched, decoded and then put into the issue queue.
This not only increases the energy consumption of the issue
queue logic with additional wake-ups and selections, but also
adds more pressure to the register file.

A number of front-end throttling techniques have been
proposed for improving the energy efficiency during the
fetching process in superscalar pipelines. These techniques
can be categorized into hardware-based runtime [3, 7, 9,
10, 11] and software-based static [8, 13, 18] techniques.
Hardware-based techniques assume that the program state
is stable and use the recent history information to predict
future behavior. These can catch dynamic behavior such
as cache misses but cannot catch irregular situations such
as abrupt phase changes. For example, a flow-based fetch
throttling technique [3] uses the instruction Decode/Commit
rate (DCR) in the previous cycle to decide whether to stall
instruction fetching in the next cycle. Throttling is triggered
when high DCR values occur as a result of branch mispre-
diction. Because this approach cannot catch the bursty be-
havior of programs, it will cause substantial performance
degradation (more than 8% for some benchmarks).

Software-based throttling techniques can estimate the
ILP based on compile-time program analysis and provide
indications of sharp changes in ILP (or ILP bursts). Sta-
tic techniques may, however, produce inaccurate predic-
tions due to their inability to capture dynamic effects such
as branch mispredictions and cache misses. Previous re-
search [18] employed compiler techniques to estimate the
IPC and used the estimated IPC to drive its fine-grained
fetch-throttling energy-saving heuristic. A fetch will be
stalled in the following cycle if the estimated IPC is lower
than a predefined threshold, which in [18] has been set to
2 for an 8-way issue processor. Throttling using such a low
threshold will have only a small negative effect on perfor-
mance, but will also yield relatively small energy savings.

There are two potential problems using a fixed low value
of the IPC-threshold to drive fetch throttling. The first one
is that it limits the throttling opportunities at high IPC val-
ues. If there are many instructions left unexecuted in the
previous cycle, we could throttle at a higher IPC-threshold
with probably no performance loss. The second problem is
that the fixed IPC-threshold technique may throttle at an
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inappropriate time, resulting in a performance loss. Assume
for example that the estimated IPC in the following cycle is
2, but there are no instructions left in the issue queue from
the previous cycle; a throttling at this time is inappropriate
and will result in a performance loss. Therefore, by using
adaptive rather than fixed IPC-thresholds for fetch throt-
tling, we could overcome both problem and obtain better
results.

In this paper, we present a new approach called Compiler-
based Adaptive Fetch Throttling (CAFT), which allows
changing the throttling IPC-threshold adaptively at run-
time. Our technique is based on compile-time static IPC
estimation, but we use the Decode/Issue Difference (DID)
to assist the fetch throttling decision based on the statically
estimated IPC. DID is the difference between the numbers
of decoded and issued instructions in the previous cycle,
which can be considered as the recent history information.
The IPC-threshold is changed dynamically according to the
DID value, making it possible to throttle at a higher es-
timated IPC if appropriate. This increases the throttling
opportunities and thereby results in larger energy savings.

The contributions of this paper are:

• We present a flexible compiler-based fetch throttling
technique that can change the throttling threshold
adaptively with the help of dynamic information. Be-
cause CAFT can throttle more cycles than CFT, it
saves more energy.

• We provide a detailed analysis of the distribution of
IPC-thresholds for the CAFT technique. It shows that
over half of the throttle cycles are performed at IPC-
thresholds above 2, allowing significant improvements
in the throttling opportunities. As a result, our tech-
nique can save more energy than a fixed low IPC-
threshold scheme and still preserve performance.

• We make comparisons to DEP - the dependence-based
fetch throttling scheme [3] - a flow-based hardware fetch
throttling technique, and to JIT - the Just-In-Time in-
struction delivery scheme [10] - a hardware-based fetch
throttling technique which uses information about in-
flight instructions to control the front-end instruction
fetching. Both methods are based on the same under-
lying principles that we use in CAFT. We demonstrate
that although CAFT has only a small relative reduction
in energy consumption, its performance loss is consid-
erably lower compared to DEP and JIT.

The rest of the paper is organized as follows. In the next
section we briefly describe the compiler-based static IPC
estimation approach. In Section 3 we present our compiler-
based adaptive fetch throttling technique. For comparison
purposes, we also describe the dependence-based hardware-
only throttling technique, the just-in-time instruction deliv-
ery technique and the DID-based technique. Our evaluation
methodology is presented in Section 4 followed by our nu-
merical results in Section 5. Section 6 describes some re-
lated work. Finally, we present a summary of our work in
Section 7.

2. Compiler-based IPC Estimation

In our work, we use compile-time static IPC-estimation to
drive throttling, which is similar to what has been proposed
by Unsal et al. [18]. A brief introduction to the compiler-
level IPC-estimation scheme is provided in this section.

Our implementation considers only true data dependen-
cies (Read-After-Write or RAW) to check if instructions de-
pend on each other or can be executed in parallel. As men-
tioned in [12], a major limitation of increasing ILP is the
presence of true data dependencies. Tune et al.[17] also re-
mark that the bottleneck for many workloads on current
processors is true dependencies in the code. Although the
impact of true dependencies can be mitigated through the
use of value speculation, the energy overhead of value spec-
ulation hardware has been found to be prohibitively high
[4]. In our experiments, we consider a standard, non-value
speculating out-of-order architecture. However, note that
the compiler-driven framework is equally applicable to an
architecture with value speculation, only the compiler-level
passes need to be modified.

We statically determine true data dependencies using
data dependency analysis at the assembly-code level. Our
post-register allocation scheme uses monotone data flow
analysis, similar to [2]. We identify data dependencies at
both registers and memory accesses. Register analysis is
straightforward: the read and written registers in an in-
struction can be identified easily, since registers do not have
aliases. However, for memory accesses, there are three
implementation choices: no alias analysis, complete alias
analysis, or alias analysis by instruction inspection [14]. We
perform an approximate and speculative alias analysis by
instruction inspection that provides ease of implementation
and sufficient accuracy. In this scheme, we distinguish be-
tween different classes of memory accesses such as static or
global memory, stack and heap. We also consider indexed
accesses by analyzing the base register and offset values to
determine if different memory accesses are referenced. If this
is the case, we do not consider this pair of read-after-write
memory accesses as a true dependency.

We use SUIF [19]/MachSUIF [16] as our compiler frame-
work. SUIF does high-level passes while MachSUIF per-
forms machine-specific optimizations. The final MachSUIF
pass produces Alpha assembly code. We have added new
passes to both SUIF and MachSUIF to annotate and prop-
agate the static IPC-estimation. Our IPC-estimation is at
the basic block or loop level: loop beginnings and endings
serve as natural boundaries for the estimation. The high-
level loop annotation pass works with expression trees and
traverses the structured control flow graph (CFG) of each
routine. The other added pass, the IPC-prediction pass, is a
lower-level MachSUIF pass that runs just prior to assembler
code generation.

3. CAFT: Compiler-Based Adaptive Fetch
Throttling

As mentioned before, the previous compile-time static
IPC-estimation based fetch throttling framework fixes the
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throttling IPC-threshold at 2 and assumes that throttling at
such a low IPC will have little effect on performance. This
approach limits the energy savings because it ignores many
throttling opportunities which exist at a higher IPC. How-
ever, if we fix the throttling IPC-threshold at a high value,
the performance will rapidly decrease due to too frequent
throttling.

An adaptive throttling IPC-threshold, which would allow
us to throttle at a higher estimated IPC, could be beneficial
if it can still keep the performance loss low. If we can change
the IPC-threshold adaptively and throttle at a higher IPC
only when appropriate, we can reduce the number of cache
accesses considerably. As a result, instructions are fetched
just in time to exploit the available parallelism. Also, since
fetching will proceed at a slower pace, we will reduce the
number of incorrectly speculated instructions that enter the
pipeline.

After instructions are decoded, they are put into the issue
queue and executed on individual functional units if all the
operands are ready and enough functional units are avail-
able. In a perfect machine with no constraints such as true
data dependencies, the number of instructions through the
decode and issue stages should be identical during a pe-
riod of time. When the number of decoded instructions sur-
passes the number of issued instructions, this means that
sufficient parallelism does not exist and instruction decode
has to be suspended. If we continue to fetch and decode
instructions at this time we only add to the overall energy
consumption, especially in the I-cache, while not improving
performance. A large Decode/Issue Difference (DID) value
means that many instructions were left unexecuted, and the
performance will not be affected if we throttle for one cycle.

The difference between decoded and issued instructions
can be considered as the recent history information that is
used to change the throttling IPC-threshold dynamically.
With both recent history information (runtime DID value)
and future estimation (compiler-time IPC estimation), we
can capture the properties of the pipeline behavior more ac-
curately than by using the hardware-based dynamic throt-
tling or the compiler-based static throttling individually.
Coordinating compiler-provided information and runtime
DID values is crucial to achieving higher energy savings and
at the same time avoiding high performance penalties.

3.1. The Algorithm

Instead of using a fixed IPC-threshold such as 2, CAFT
dynamically changes the IPC-threshold between 2 to 5.
Even when the estimated IPC is 2, we still selectively throt-
tle based on the runtime DID value, instead of throttling
whenever the IPC is below 2 as in [18]. The reason is
that although the estimated IPC may be low in some cy-
cles, we should not throttle if execution units are idle and
waiting for incoming decoded instructions. If we do, throt-
tling will impact the performance. On the other hand, we
limit our highest IPC-threshold to 5. Our experiments show
that throttling above an estimated IPC of 5 is very rare.

As mentioned above, we use the instruction Decode/Issue
Difference (DID) to assist the IPC-estimation throttling
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Figure 1. Hardware implementation for CAFT

technique to throttle at changeable thresholds. If the in-
struction decoding rate matches the instruction issuing rate
(i.e., the DID value is zero), no fetch throttling is needed. If
the DID value in the last cycle is greater than zero, which
means that redundant instructions were decoded, there exist
opportunities to throttle the fetch at the next cycle. Addi-
tional fetching will introduce the possibility of miss-fetching
and increase the number of Icache accesses, resulting in a
waste of energy. For example, if the DID in the previous cy-
cle is 3 and the IPC estimate in the next cycle is less than 3,
we can safely throttle for one cycle during instruction fetch-
ing. If the instructions left unused in the previous cycle can
provide the needs of the next cycle, stopping fetching for
one cycle will not hurt the performance. The algorithm can
be summarized as follows:

IF Estimated IPC ≤ DID
THEN throttle for one cycle

For different DID values, we throttle for all the estimated
IPCs up to the DID value. The DID value captures dy-
namic effects such as cache misses and branch mispredic-
tions, which are not captured by the fixed IPC-threshold
compiler-based fetch throttling methods.

3.2. Architecture-level Implementation

The structure of our architecture-level design is similar
to [18], which uses a fixed IPC-threshold. Estimated IPC
values are inserted into the binary code and forwarded to
the pipeline during decoding. It requires 2-3 bits to encode
the estimated IPC values. If enough flexibility exists in the
ISA of the target processor, this information can be encoded
directly into the instructions, eliminating the need for a spe-
cial instruction.

We show the architectural implementation of CAFT in
Figure 1. The compiler-supplied estimated IPC value is
identified and latched at the decode stage. We also add two
counters to monitor the number of instructions decoded and
issued in the previous cycle. The values of these counters
are subtracted to calculate the DID, which is then compared
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with the estimated-IPC latched at the decode stage. If the
estimated-IPC is smaller than the DID, a fetch throttling
signal is generated and transmitted to a clock-gater to stall
fetching for one cycle [18].

3.3. Hardware-based Fetch Throttling

Dependence-Based (DEP) For comparison sake, we
also implemented the hardware Dependence-based (DEP)
scheme [3]. DEP inspects the instructions currently being
decoded and counts the dependencies among them. When-
ever the number of dependencies exceeds a pre-specified
threshold, a throttling signal is triggered. The justification
for this scheme is that a large number of dependencies is an
indication of a long and probably critical computation path.
Consequently, it is unlikely that prefetching additional in-
structions will significantly improve performance.

Instead of throttling for both the fetch and the decode
stages as in [3], we only throttled the fetch stage, which
makes it similar to our CAFT. Also, we compared the num-
ber of dependencies among the decoded instructions to the
number of decoded instructions instead of to the decode-
width as done in [3]. Comparing to the decode-width does
not consider the fact that the number of decoded instruc-
tions in one cycle affects the number of dependencies in
that cycle. Our experiments showed that these modifica-
tions will result in higher energy savings than the scheme
in [3]. We obtained the best results when, once the number
of dependent instructions among the decoded instructions
was greater than half the number of decoded instructions, a
throttle was triggered at the following cycle. We show the
comparison of this approach with our CAFT approach in
Section 5.

Just-In-Time Instruction Delivery (JIT) We next
compared our CAFT method to the Just-In-Time (JIT) in-
struction delivery scheme [10] which is another hardware-
based fetch throttling technique similar to CAFT. It uses
information about in-flight instructions to control the front-
end instruction fetching. When the number of in-flight in-
structions exceeds the MAXcount, instruction fetching is in-
hibited. The MAXcount value can be dynamically adjusted
to the least value such that performance is not reduced by
some threshold amount, e.g., 2%.

Because our processor configuration is different from that
in [10], the tuning parameters in adjusting the MAXcount
value were also different. After extensive experiments, we
concluded that when the initial value of MAXcount is 32
and the MAXcount increment is 16 in every 100K instruc-
tions interval, the energy savings are maximal. With these
parameters, our measured performance reduction was simi-
lar to that in [10] (i.e., 3%). Another difference is that when
MAXcount was an “optimal” value, we only restarted tun-
ing if the performance (IPC) changed by more than some
“noise” margin. We did not consider branch changes as a
reason for retuning, because in some benchmarks, consider-
ing branches as “noise” causes many unnecessary tunings,
resulting in a substantial performance reduction.

Decode/Issue Difference (DID) In order to verify
that the DID-directed CAFT is more efficient than any of

Processor Speed 1.5GHz
Process Parameters 0.18 μm, 2V
Issue Out-Of-Order
IF,ID,IS,IC Width 8-way
Fetch Queue Size 32
Instruction Queue Size 128
Branch Prediction 2K entry bimodal
Int.Functional Units 4 ALUs, 1 Mult./Div.
FP Functional Units 4 ALUs, 1 Mult./Div.
L1 D-cache 16KB, 4-way, writeback
L1 I-cache 16KB, 4-way, writeback
Combined L2 cache 128KB, 4-way associative
L2 Cache hit time 20 cycles
Main memory hit time 100 cycles

Table 1. Baseline parameters

the individual schemes alone, we also tested the hardware-
only Decode/Issue Difference (DID) technique. This tech-
nique assumes that insufficient parallelism exists when the
number of instructions decoded exceeds the number of in-
structions issued, and continuing fetching will make the in-
structions stay longer in the issue queue wasting the wake-up
and selection energy of the issue logic. In such a case, we
can throttle the fetch.

In addition to the differences, we also tested different ra-
tios between the numbers of decoded and issued instructions.
The best results were obtained when the number of decoded
instructions was twice the number of issued instructions.
When we set the ratio to a lower value, the performance
decreased rapidly. This is different from CAFT, which can
throttle at a very low Decode/Issued Difference value if the
IPC estimation in the next cycle is low. We show the nu-
merical results in Section 5.

4. Evaluation Methodology

LARGE
The baseline architecture is described in Table 1. Our

baseline processor configuration has 128 entries in its in-
struction queue; therefore we use a 128 element Register Up-
date Unit (RUU). The RUU includes the instruction queue
as well as the physical register files and the reorder buffer.
We use a size of 64 for the Load-Store Queue.

We used the SimpleScalar [6]/Wattch [5] framework to
run the binaries and collect the energy results. We ran our
baseline application without any annotations and without
any throttling, and all other throttling versions were com-
pared against this baseline. SimpleScalar has been modified
to recognize the compiler-generated IPC flags and IPC val-
ues. In Wattch, we used the activity-sensitive power model
with aggressive conditional clocking. The rationale for this
choice was to compare our fetch-throttling framework to an
unthrottled baseline that is already power-efficient. Wattch
can be retuned for the state-of-the-art technology scaling
parameters; we use a 0.18 μm, 1.5GHz, 2V process. We
extended the power dissipation model in Wattch so that it
accounts for the extra power overhead due to the 2-bit field

115



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

mesa vpr gap pegwit parser jpeg gsm equake average

 T
hr

ot
tl

in
g 

C
yc

le
s

CFT CAFT

Figure 2. Normalized throttling cycles

decoding in the dispatch stage and the comparison hardware
logic.

We selected a mix of computation-bound and multimedia
applications from the SPEC2000 [1] and Mediabench bench-
mark suites. We randomly chose four applications from
each suite: pegwit, gsm, jpeg, mesa from Mediabench; gap,
parser, vpr, equake from SPEC2000. We ran all Mediabench
applications to completion. For the SPEC CPU2000 bench-
marks we skipped past the initialization stage and simulated
the next 500 million instructions using the reference input
set. To skip the initialization phase, we fast-forwarded by
the number of instructions as prescribed by Sair et al. [15]
in their SPEC CPU2000 initialization segment analysis.

5. Results

In this section, we first show the throttling cycles and the
IPC distribution when throttling using CAFT in the differ-
ent benchmarks. Then, we present the execution time and
energy results for different throttling schemes in different
benchmarks. In explaining how fetch throttling can save
energy, we also show the reduction in miss-speculated in-
structions and the distribution of the fetch width for each
fetch operation. Finally, we show the EDP and ED2P for
the different throttling techniques.

5.1. IPC Distribution

In order to show how many throttle cycles are added after
changing the threshold adaptively, we counted the number
of throttle cycles in different benchmarks for both CFT and
CAFT, normalizing the number of throttle cycles of CAFT
to that of CFT. The results appear in Figure 2. From this
figure we can see that CAFT has more throttling cycles than
CFT, especially for pegwit, where the value is up by 3.8x.
More throttling cycles result in higher energy savings. On
average, the total number of throttling cycles for CAFT is
almost doubled compared to CFT.

The total number of throttling cycles increases substan-
tially because CAFT can throttle fetching at higher esti-
mated IPC values. In order to identify how many times
CAFT throttles with an estimated IPC above 2, we ana-
lyzed the estimated IPC distribution when throttling, shown
in Figure 3. From this figure, we can see that more than half
of all the throttling cycles have an IPC which is above the
threshold of 2, in all the benchmarks except mesa. In many

0%

20%

40%

60%

80%

100%

mesa vpr gap pegwit parser jpeg gsm equake

%
 o

f 
th

ro
tt

le
 c

yc
le

s 
in

 d
if

fe
re

nt
 I

P
C IPC2 IPC3 IPC4 IPC5

Figure 3. IPC distribution when throttling using CAFT

of the throttles the IPC is 3 or 4 but very few have an IPC
of 5, since throttling which such a high IPC value may result
in a significant performance penalty.

5.2. Execution Time and Energy

Figure 4 shows the execution time and energy con-
sumption of five different fetch throttling schemes, normal-
ized to the baseline without fetch throttling (No-Throttle).
The schemes are: hardware dependence-based (DEP),
just-in-time instruction delivery (JIT), decode/issue differ-
ence (DID), compiler-based fixed threshold (CFT) and our
compiler-based adaptive scheme (CAFT).

First, we observe that in most cases, the hardware-based
fetch throttling schemes (DEP, JIT and DID) have a longer
execution time than the static IPC-estimation based fetch
throttling technique. On average, DEP increases execution
time by 4%, JIT increases execution time by 3.3%, while
CAFT increases it by only 1.5%. For the equake benchmark
the execution time is increased by more than 8% when using
DEP, which is undesirable for high performance processors.

Hardware-based schemes cause a large performance loss
because such techniques can only capture the history infor-
mation and use the past behavior to drive fetch throttling.
They assume that the program behavior in the past and the
near future is stable, yet many programs exhibit irregular or
bursty behavior which cannot be detected solely based on
the past behavior. Although JIT can dynamically adjust the
future MAXcount as a function of past program behavior,
the tuning process itself may cause significant performance
degradation. Also, such changes can be detected only after
a large interval (e.g., 10K instructions).

Static IPC, on the other hand, is a compile-time estima-
tion of the actual IPC based on program analysis, and thus it
can provide an indication of a sharp change in ILP. CFT uses
a fixed low IPC-estimation as the throttling threshold and
has a small performance loss. For CAFT, although it can
throttle at higher estimated IPCs and for more cycles, the
performance loss is still low. The combination of DID and
future IPC estimation can capture the program behavior
more accurately than software- or hardware-only fetch throt-
tling techniques. With the help of recent history informa-
tion, dynamic effects like cache misses and branch mispredic-
tion will have a smaller effect on static IPC-estimation-based
fetch throttling. Thus, when DEP cannot catch such bursty
program phase changes, it causes a significant performance
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decrease. This is especially evident in Figure 7 which shows
that the ED2P for DEP is worse than for the No-Throttle
baseline.

When comparing the normalized energy in Figure 4, CFT
is the worst scheme, with only 4.6% total energy savings
compared to the baseline. The reason is that CFT loses
many throttling opportunities when the estimated IPC is
high, due to its low IPC-threshold of 2. CAFT, which
changes the throttling threshold adaptively based on the
application characteristics, can throttle at a high estimated
IPC and thus throttles more cycles than CFT. The use of
DID information ensures that CAFT does not increase the
execution time compared to CFT. CAFT achieves greater
energy reduction than CFT and the total average energy
reduction is almost 8%. CAFT also has higher energy sav-
ings when compared to the hardware-based fetch throttling
schemes DEP, JIT and DID.

From Figure 4, we also observe that DID, when applied
alone, cannot match the energy/performance benefits of
CAFT. Like DEP and JIT, DID can not catch bursty pro-
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marks

gram phase changes. As a result, it has a larger performance
decrease than the software-based schemes CFT and CAFT.

The increase in the number of throttling cycles is the main
cause for the reduction in energy consumption in CAFT. A
higher number of throttling cycles means a greater reduc-
tion in the number of fetched and executed miss-speculated
instructions and a reduction in Icache accesses. With fewer
instructions fetched, it not only saves Icache accesses en-
ergy, but also reduces the actions of forwarding instruc-
tions through pipeline stages, resulting in whole chip en-
ergy savings. As shown in Figure 5, the average reduction
in miss-fetched instructions in CAFT is near 45% relative
to the non-throttle scheme, while JIT achieves only a 36%
reduction in miss-fetched instructions. Fetch throttling can
greatly reduce the unnecessary miss-fetched flushes and save
energy in different pipeline stages. Also, with a higher num-
ber of throttling cycles compared to CFT, CAFT can greatly
reduce the number of Icache accesses and cause the number
of instructions in each Icache access to be either 0 or 8 most
of the time. The reason is that the number of available
entries of the fetch buffer determines the number of instruc-
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Figure 7. Energy-delay product and energy-delay2 product savings

tions that can be fetched. Fetch throttling can cause the
fetch buffer to be drained, allowing it to accommodate a
full fetch (i.e., 8 instructions) fairly often. With the same
number of instructions to run, the increase in the number
of full fetches will decrease the number of total Icache ac-
cesses. From Figure 6, we can see that for CAFT and JIT
the number of fetches is most of the time either 0 or 8 while
in the non-throttle case the number of instructions fetched
is distributed between 1 to 7 half of the time.

5.3. EDP/ED2P

In order to highlight the impact on performance, we show
the EDP and ED2P savings in Figure 7. Although CAFT
has no significant energy savings relative to DEP and JIT,
the EDP reduction is significant due to the smaller perfor-
mance decrease. Similarly, although CAFT has the same
low performance loss as CFT, the EDP reduction for CAFT
is larger because it saves more energy. CAFT is thus more
beneficial than software- or hardware-only fetch throttling
techniques when EDP is used as the metric.

As shown in Figure 7, DEP achieves 3.5% EDP reduction
and CFT achieves 3% reduction on average. The EDP sav-
ings of CAFT are more than doubled for several benchmarks
compared to either DEP (e.g., mesa and jpeg) or CFT (e.g.,
pegwit and gsm), averaging 6.7% reduction on all bench-
marks. When considering ED2P, DEP has no benefit at all
because of the high performance penalty. The other three
schemes (JIT, DID and CFT) have only an average reduc-
tion of less than 2%, while the average ED2P improvement
for CAFT is 5.3%.

6. Related Work

Prior related work can be divided into two groups:
software-based techniques [8, 13, 18] and hardware-based

techniques [3, 7, 9, 10, 11].
Unsal et al. [18] propose a compiler-driven static IPC-

estimation-based fetch throttling scheme that is based on
dependence testing in the compiler back-end. This scheme
throttles fetching at a low estimated IPC value. They fix
the throttling IPC-threshold to 2 to lower the effect on per-
formance, but with a low threshold the energy savings are
not significant.

Mehta et al. [13] present the Fetch Halting technique that
suspends instruction fetching when the processor is stalled
by a critical long latency instruction. In order to charac-
terize critical instructions, they use software-profiling tech-
niques to annotate the critical load instruction. Then, if the
hardware predicts L2 cache or main memory misses when
executing a critical load instruction, fetch will be halted.

An early hardware-based front-end technique is the
pipeline gating work of Manne et al. [11]. The authors
inhibit speculative execution when such execution is very
likely to fail. They analyze the likelihood of a branch to
mispredict and exclude wrong-path instructions from being
fetched into the pipeline. Their results show a 38% reduc-
tion in wrong-path executions with a 1% performance loss.

Aragon et al. [9] also focused on reducing the power dis-
sipated by mis-speculated instructions. They propose Se-
lective Throttling as an effective way of triggering different
power-aware techniques (fetch throttling, decode throttling
or disabling the selection logic). For branches with a low
confidence prediction, the most aggressive throttling mech-
anism is used whereas high confidence branch predictions
trigger the least aggressive techniques.

An alternative front-end approach is the fetch/decode
throttling proposed by Baniasadi et al. [3]. This fine-
grained approach utilizes the information passing through
each pipeline stage to estimate the ILP. Based on this infor-
mation, the fetch/decode stage is stalled when insufficient
parallelism exists. However, as mentioned by the authors,
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traffic per pipeline stage is used as an indirect, and approx-
imate, metric of power dissipation.

Karkhanis et al. [10] suggested throttling based on Just
In Time Instruction Delivery. This scheme monitors and
dynamically adjusts the maximum number of in-flight in-
structions in the processor. A counter for the number of
in-flight instructions is incremented when an instruction is
fetched, and decremented when an instruction is commit-
ted. Another register, MAXcount, sets the limit on the
allowable in-flight instructions. Whenever the in-flight in-
struction count exceeds MAXcount, instruction fetching is
stopped. The algorithm searches for the “optimal” number
of in-flight instructions and changes the value of MAXcount
at intervals of 100K committed instructions.

Buyuktosunoglu et al. [7] introduced an issue-centric
fetch-gating scheme based on issue queue utilization and
application parallelism characteristics. The issue queue uti-
lization is obtained by tracking the occupancy of the issue
queue and the application parallelism characteristics are ob-
tained by monitoring from how deep in the Reorder Buffer
(ROB) are instructions being issued. Fetching is stopped if
over half of the instructions that were issued are located in
the lower half of the ROB and the issue queue is at least
half full.

7. Conclusions

Throttling at a fixed low IPC limits the capability to
reduce energy for static IPC-estimation-based fetch throt-
tling techniques. In this paper, we propose a Compiler-
based Adaptive Fetch Throttling (CAFT) technique, which
attempts to change the throttling IPC-threshold adaptively
and still maintain a good performance. Compared to the
previous fixed threshold approach (CFT) [18], we show that
CAFT achieves a 3.7% additional EDP saving and 6.7%
overall EDP reduction. In comparison with previous hard-
ware dependence-based fetch throttling schemes (DEP and
JIT), CAFT has a lower performance degradation and a
higher EDP reduction.
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