
Wire-Streaming Processors on 2-D Nanowire Fabrics

Teng Wang, Mahmoud Ben-Naser, Yao Guo, Csaba Andras Moritz

Electrical and Computer Engineering Department
University of Massachusetts Amherst, MA, USA
{twang, mbennase, yaoguo, andras}@ecs.umass.edu

ABSTRACT

Most of the research in the field of nanoelectronics
has been focused on nanodevices and fabrication as-
pects and as a result a variety of nanodevice technolo-
gies have been demonstrated. By contrast, very little
work has been reported on the design and evaluation
of circuits and computational architectures using nano-
devices. There is similarly not much work on the im-
pact of device and fabric (e.g., the 2-D nanowire ar-
ray) properties on computing. In this paper, we focus
on computing architectures based on silicon nanowires.
We explore a simple stream processor developed on 2-
D nanowire fabrics and compare its density to a 30nm
CMOS implementation. We also identify techniques to
work around fabric-specific constraints. Our initial eval-
uation shows that this stream processor has great den-
sity advantage compared to CMOS technology.

Keywords: nanoscale circuits, architecture, NASIC,
silicon nanowires, carbon nanotubes

1 INTRODUCTION

Nanotechnology is one of the most promising replace-
ments for CMOS technology. Perhaps the most exciting
nanodevices today for nanoscale integrated circuits are
semiconductor nanowires (NWs) and arrays of crossed
carbon nanotubes (CNTs). Researchers have already
built FETs and diodes out of NWs [4]–[6] and CNTs [8].
While there are many practical challenges still remain-
ing, it seems that it will soon be possible to build regular
nanoarrays from uniform-length CNTs or NWs [7]. By
contrast, we have seen very little work on the design and
evaluation of circuits and computational architectures
using nanodevices. Similarly, little work on the impact
of device and fabric properties on computing has been
made so far.

Our previous work [1]–[3] has addressed some of the
challenges and technical constraints when building com-
puting systems on 2-D nanowire fabrics. These chal-
lenges include:

• The 2-D regular NW array, where doping is fixed
in each direction, significantly impacts the density
of circuits due to the diagonal problem, when the

logic is cascaded, only the diagonal portion of the
nanotile is utilized [1].

• Having 2-level logic instead of multi-level on 2-D
nanoarrays reduces the density further.

• Control circuits and bypass networks are difficult
to implement. This is because building feedback
paths on 2-D nanoarray is challenging.

• Similarly, it is hard to design high-density sequen-
tial circuits using traditional MOS-like approaches,
because they require feedback paths.

In this paper, we present a complete design of a sim-
ple stream processor developed on 2-D nanowire fab-
rics, called WISP-0. WISP-0 is the first version of our
Wire-Streaming Processors (WISP). In WISP, in or-
der to preserve the density advantages of nanodevices,
data are streamed through the fabric with minimal con-
trol/feedback paths. Intermediate values produced dur-
ing processing are often stored on the nanowires without
requiring explicit latching.

We also compare the density of a fully implemented
CMOS design and the NW-based WISP-0. Our evalu-
ation shows that it is possible to preserve the density
advantages of nanodevices in WISP despite the fabric
constraints.

2 OVERVIEW OF NASICS

The WISP architecture proposed here is a key part
of our effort to build NASICs: Nanoscale Application-
Specific Integrated Circuits [1]–[3]. NASICs are based
on extensive research on understanding emerging device
and fabrication constraints. A NASIC design has a hi-
erarchical and tiled architecture and it is optimized to
deal with various manufacturing, fabric and device con-
straints. Next, We briefly describe the key components
of NASICs. More details can be found in our previous
papers [1]–[3].

2.1 Nanotiles

Nanotiles are the basic building blocks of NASICs.
Figure 1 shows a typical nanotile. The orthogonally
crossed nanowires form a nanoarray. The junctions can
be programmed as FETs or detached [7]. Nanoarrays



Figure 1: A nanotile for a 1-bit full adder. The thicker
wires are MWs and the thinner wires are NWs. NWs in
different directions have different doping types.

are surrounded by microwires (MWs). Each signal is
expressed in its both original and complementary forms.
Microwires provide signals and power supply. Pull-up/down
arrays act as the interface between MWs and NWs. To
program each NW junction, the number of MWs must
be at least logarithmic to the number of NWs [7].

2.2 Dynamic Nanotiles and Pipeline

One of the most common components in any proces-
sor design is the datapath. Registers or latches are re-
quired to pipeline the data flow. Due to topological
and doping constraints, latch circuits are however very
difficult to implement on nanoarrays. In NASICs, we
use a new dynamic circuit style to achieve temporary
storage in stead of using explicit flip-flops. A pipelined
NASIC circuit can be built by cascading dynamic nano-
tiles without explicit latching of signals. Use of latch
circuits would have affected density considerably due to
the diagonal problem [1]–[3].

2.3 Interconnect and Multi-tile Designs

A nanoscale processor may have thousands of nano-
tiles. Achieving efficient communication between nano-
tiles is a critical design aspect. In NASICs, local com-
munication between adjacent nanotiles is provided by
NWs for area efficiency. MWs are used for global com-
munications only.

3 WISP-0

WISP-0 is an initial version of our wire-streaming
processors. It exercises many of the design strategies
and optimizations in NASICs. WISP-0 contains a 2-bit
datapath and a 3-bit opcode. Figure 2 shows the overall
layout of WISP-0. In this figure, each box surrounded
by dashed lines represents a nanotile. All adjacent nano-
tiles are connected by a set of NWs. These nanotiles are

RF

ALU
addr

ins

opcode

oprands
result

4

7 9

29

PC

ROM

DEC

p-nanowires

n-nanowires

nanoarray

Figure 2: The floorplan of WISP-0

Program

Counter
Ins Rom Ins Decoder

Register

File
ALU4 7 9

9

6

Figure 3: The schematic of WISP-0

all designed in dynamic style and are cascaded together
”on the wire” to form a 5-stage pipeline: fetch, decode,
register file, execute and write back. No explicit latches
are used. Figure 3 is the schematic of WISP-0.

The PC block implements the program counter. It
generates a 4-bit address for each cycle. ROM is the in-
struction ROM. It fetches one instruction according to
the address from PC. The instruction goes to DEC (de-
coder) and is decoded into opcode and operands. Next,
the opcode and operands enter RF (register file) stage
and read the value of operands from the registers. The
instruction will be executed in ALU and the result will
be written back to the register file.

Control logics and bypass networks are difficult to
implement on 2-D fabrics. Carefully selected ISA min-
imizes these circuits. Currently WISP-0 supports the
following instructions: nop, mov, movi, add and mult.
All fields in these instructions have fixed lengths (like
RISC) in order to simplify the design of the decoder
and ALU.

Due to limited space, we only include three key blocks:
PC, RF and ALU. MWs are not shown in the following
figures to improve the readability. For simplicity, the
pull-up/down networks are also omitted.

Figure 4 is the layout and schematic of the program
counter. This block implements a 4-bit accumulator in
a nanotile. It has two components: a 4-bit incrementer



a
d

d
r3

a
d

d
r2

a
d

d
r1

a
d

d
r0

>+

addr
1

reg

Figure 4: The layout and schematic of the program
counter in WISP-0. Black dots represent p-FET and
white dots represent n-FET.

(bottom half in the layout) and a 4-bit latch (top half in
the layout). In each cycle, the output of the incrementer
is delayed and fed back to the input. The address is
therefore increased by one in each cycle.

The design of the register file is shown in Figure 5 and
Figure 6 is its schematic. In this block, data are stored
on the 16 horizontal NWs at the bottom. They are
selected by the 2-bit 4-to-1 multiplexer (2-bit MUX41
in the figure) by operand1 and operand2 respectively.
The data (operanda) read out by operand1 is sent di-
rectly to ”ALU”. The data read out by operand2 is sent
to another multiplexer (2-bit MUX21 ). This data and
operand2 are selected by opcode to produce operandb.
The reason is that some instructions (e.g., movi) will use
the immediate data provided by the instruction instead
of the values from registers. At the same time, opcode
and dest (destination register address) are pipelined to
”ALU”. If ”ALU” needs to write results back to the
register file, the data and control signals will enter from
the top right corner of the tile and update the values on
the bottom 16 horizontal NWs.

Figure 7 shows the layout of ALU in WISP-0. This
block executes the instructions and generates the re-
sult (result in the figure) and control signals (rf3˜0 ).
The top part (2-4 decoder) is a 2-4 decoder. It selects
the register to be written back according to the destina-
tion address (dest). The bottom part (adder/multiplier)
represents an arithmetic unit. It calculates the summa-
tion or product (decided by opcode) of operanda and
operandb.

4 DENSITY EVALUATION

The key advantage of nanoscale devices is their den-
sity. However, we have found that without new cir-
cuit and architecture approaches, this density advantage
could be lost due to manufacturing, fabric and device
constraints when building nanoscale systems [1]–[3]. In

opcode dest

rf
2

rf
1

rf
0

rf
3opcode

o
p

e
r
a
n

d
1

o
p

e
r
a
n

d
2

d
es

t

o
p

e
r
a
n

d
a

o
p

e
ra

n
d

b

re
su

lt

Figure 5: Register file in WISP-0. It has four 2-bit
registers.

MUX41

MUX41
MUX21

Regfile

opcode

operand2

rf3~0

result

operand1
reg0
reg1
reg2
reg3

operanda

operandb

opcode

Figure 6: The schematic of register file.

opcode

o
p

er
a
n

d
b

d
es

t

o
p

er
a

n
d

a

re
su

lt

rf
3

~
0

2-4 decoder

adder/multiplier

2-4

decoder

adder/

multiplier

opcode

opcode

operanda

operandb

rf3~0

result

dest

Figure 7: The layout and schematic of the ALU in
WISP-0.



Core

Nanoarray

X

Y

log2X

log2X

log2Y
log2Y

log2X+4

log2Y+4
Microwire

Pull up/down

pre/eva 

nanowire

Figure 8: Area breakdown of a typical nanotile. This fig-
ure shows the minimum size of pull-up/down networks
and MWs.

this section, we make an initial density evaluation on
WISP-0.

First let us analyze a typical nanotile in NASIC. Fig-
ure 8 shows the area breakdown. Assuming that the size
of a nanoarray is X ∗Y , we need at least 2log2Y vertical
and 2log2X horizontal NWs as pull-up/down networks
plus 2log2X +4 vertical and 2log2Y +4 horizontal MWs
(4 MWs as power supply and ground). The total area
becomes: [X +2log2Y + s∗ (log2X +4)]∗ [Y +2log2X +
s ∗ (log2Y + 4)].

In this expression, s is the pitch ratio of MWs to
NWs. We assume that the pitch of NWs is 10nm and s =
9. This is a relatively conservative assumption for the
rapidly improving nanodevice technology. We use this
expression to calculate all blocks in WISP-0. The total
area is 9.04µm2. Among this area, nanoarrays take only
0.77µm2 while the overhead of MWs dominates. The
area efficiency (Areananoarray/Areatotal) is only 8.5%.
With larger nanotiles, however, this efficiency can be
improved significantly as will be shown next.

To compare with CMOS technology, we implemented
a CMOS prototype in Verilog. We use the Design Com-
piler from Synopsys to synthesize it with 180nm tech-
nology. The total area is 4,098µm2. We scale this value
down to 30nm (might be expected in 10 years based
on the semiconductor industry roadmap) to make a fair
comparison. The area is 113µm2 in 30nm CMOS tech-
nology.

The density ratio between WISP-0 and the CMOS
prototype is 113/9.04 = 12.5. But, as we mentioned
before, MWs take up most area in WISP-0. Because the
number of MWs is logarithmic to the number of NWs,
when the design is larger, the area percentage of MWs
goes down. In practice, a typical nanotile would have
around 1,000×1,000 NWs inside, and the area efficiency
would go up to 76% and the corresponding density ratio
to 115.

5 CONCLUSION

In this paper, we have shown a complete design of a
simple stream processor and compared its density with
an implementation in 30nm CMOS technology. Our re-
search indicates that we successfully preserve the den-
sity advantage of nanodevices in WISP despite fabric
constraints.

Our future work includes fault tolerance on nanoar-
rays. This is especially important since nanodevices will
likely have a higher defect rate than CMOS devices.
Currently we are focusing on built-in fault tolerance at
circuit and architecture levels. In WISP, since every
signal is generated in both original and complementary
forms, the system already provides some redundancy.

REFERENCES

[1] T. Wang, Z. Qi, and C. A. Moritz, ”Opportunities
and challenges in application-tuned circuits and ar-
chitectures based on nanodevices”, in First ACM
International Conference On Computing Frontiers,
pp.503-511, Apr 2004.

[2] C. A. Moritz and T. Wang, ”Latching on the Wire
and Pipelining in Nanoscale Designs”, in Non-
Silicon Computing Workshop (NSC-3), ISCA-31,
pp.39-45, Jun 2004.

[3] T. Wang and C. A. Moritz, ”NASIC: Nanoscale
Application-Specific ICs and Architectures”,
Boston Area Architecture Workshop, BARC’04,
Boston, MA, Jan 2004

[4] Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K-Y.
Kim, and C.M. Lieber, ”Logic Gates and Compu-
tation from Assembled Nanowire Building Blocks”
Science 294, 1313 (2001).

[5] Y. Cui, Z. Zhong, D. Wang, WU Wang, and CM
Lieber, ”High Performance Silicon Nanowire Field
Effect Transistors” Nano Letters, Vol.3, pp.149-
152, 2003.

[6] Z. Zhong, D. Wang, Y. Cui, M. M. W. Bock-
rath, and C. M. Lieber, ”Nanowire Crossbar Arrays
as Address Decoders for Integrated Nanosystems”
Science, Vol. 302, 2003, p. 1377.

[7] A. DeHon, ”Array-Based Architecture for FET-
Based, Nanoscale Electronics” IEEE Transactions
on Nanotechnology, Vol. 2, No. 1, pp.23-32, Mar
2003.

[8] R. Martel, V. Derycke, J. Appenzeller, S. Wind,
and Ph. Avouris, ”Carbon Nanotube Field-Effect
Transistors and Logic Circuits” DAC 2002 New Or-
leans, ACM (2002).


