
SUDS:Primitive Mechanismsfor MemoryDependenceSpeculation

Matthew Frank,C. AndrasMoritz, BenjaminGreenwald,
SamanAmarasingheandAnantAgarwal

MIT-LCS
Cambridge,MA 02139

mfrank@lcs.mit.edu

Abstract

As VLSI chip sizesanddensitiesincrease,it becomespossibleto
putmany processingelementsonasinglechipandconnectthemto-
getherwith alow latency communicationnetwork. In thispaperwe
proposea softwaresystem,SUDS (SoftwareUn-Do System),that
leveragestheseresourcesusingspeculationto exploit parallelism
in integerprogramswith many datadependences.We demonstrate
thatin orderto achieveparallelspeedupsaspeculationsystemmust
deliver memoryrequestlatencieslower thanabout30 cycles. We
give a costbreakdown for our currentworking implementationof
SUDSthathasamemoryrequestlatency thatis nearlyableto meet
this goal.

In addition,we identify the threeprimitive runtimeoperations
that are necessaryto efficiently parallelizetheseprograms. The
subsystemsinclude(1) a fastcommunicationpathfor truedepen-
denceswithin the program,(2) a methodfor renamingvariables
that have anti andoutputdependencesand (3) a memorydepen-
dencespeculationmechanismto guaranteethatparallelaccessesto
global datastructuresdon’t violatesequentialprogramsemantics.
Wefind thatthesethreesubsystemsdonot interact,sothatthey can
beimplementedseparately. Eachsubsystemis thensimpleenough
that it canbe built in softwareusingonly minimal hardwaresup-
port. In this paperwe focuson thememorydependencesubsystem
anddemonstratethat it canbe implementedusinga simplebut ef-
fective low-costprotocol.

1 Introduction

As we move towardsthetechnologythatwill permita billion tran-
sistorsonachip,computerarchitectsneedto facethreeconverging
forces. Theseinclude the needto keepinternal chip wires short
sothatclock speedwill scalewith featuresize,theeconomiccon-
straintsof quickly verifying new designs,andchangingapplication
workloadsthatemphasizestream-basedmultimediacomputations.
A Raw machine[22, 37] is a software-exposedVLSI architecture
comprisinga mesh-connectedsetof tiles eachwith a processing
elementanda portionof theon-chipmemory. Thesearchitectures
requireonly shortwires,aremuchsimplerto designthantoday’s
superscalars,andprovide efficient parallelismfor multimediaand
signalprocessingapplications.

In this paperwe proposeSUDS(SoftwareUn-Do System),a
softwaresystemthatprovidesruntimesupportfor parallelizingin-
teger programson Raw processors.Unlike multimediaandDSP
applications,which canbeeasilyparallelizedbecausethey tendto

Submitted for publication, October 24, 1998.

contain few dependences,integer programsare characterizedby
having a largenumberof dependencesatall levels. In orderto par-
allelizeanintegerprogramthesystemmustprovideruntimemech-
anismsfor dealingwith thesedependences.In this paperwe char-
acterizetheproblemswith dependencesandexaminemechanisms
for handlingthem. We proposedividing the runtimedependence-
handlingsysteminto threesubsystems,eachof which canthenbe
addressedusingsimplesoftwaremechanismson a Raw architec-
ture.

Threesubsystemsarerequiredbecausedependencesconstrain
parallelismin threedifferentways. Most importantly, the truede-
pendencesin the programform a critical path that must be pro-
cessedsequentially. In addition,reuseof staticvariablenamesin
the programcauseswrite-after-readand write-after-write depen-
dencesat runtime. Finally, thereare potential dependencearcs
in theprogramthat arecausedby randomaccessesto global data
structures. Thesedependencesmay or may not exist at runtime
given the input datato theprogram,andtheexistenceof a depen-
dencearccanonly bedeterminedat runtime.

SUDSparallelizescodeusinga techniquesimilar to the Mul-
tiscalararchitecture[9, 31]. In SUDSeachloop is parallelizedby
cyclically distributing loop iterationsacrossthe system’s process-
ing elements. In order to simplify the runtime protocolsSUDS
breaksthe executionof the programinto chunks. The processing
elementseachrun a single iterationof the chunk in parallel and
then all the nodessynchronize.True dependencesbetweenloop
iterationsareforwardedin just a few cyclesusingthemeshinter-
connectbetweenneighboringprocessingelements.

SUDStakesasoftwareintensiveapproachto renamingantiand
outputdependences.A compiler is usedto performprivatization
analysison all loop variables.Thosethatarefoundto beprivatiz-
ableareplacedonaspeciallocalstack.Theruntimesystemcreates
alow-costcactusstackbysimplyallowingeachprocessingelement
to build a privatecopy of thelocal stackin its own localmemory.

Finally, SUDScanspeculateacrossmemorydependencesthat
cannot beanalyzedat compiletime. SUDSdedicatesa subsetof
thesystemelementsto actas“speculative memories”.All memory
requestsaresentthroughthesenodes.The speculative memories
validatethe dependencespeculationsandhold a log of write re-
questswhich canbe rolled backin the caseof a mis-speculation.
In orderto simplify thevalidationandspeculationprotocolsSUDS
occasionallysynchronizesall the nodes.In the resultssectionwe
show that this additionalsynchronizationresultsin only minimal
load-imbalanceoverheads.

This papermakestwo contributions.First,we show encourag-
ing empiricalresultsthat indicatethatwith a reasonableengineer-
ing effort softwarebasedspeculationsystemsmight achieve paral-
lel speedups.In additionwedemonstratehow to build asimple,yet
effective, low-costmemorydependencespeculationprotocol.This
simpleprotocol is madepossiblebecausewe separatethe depen-
dencehandlingprobleminto threeprimitive subproblems,eachof
whichcanbeimplementedindependentlyof theothers.
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The restof this paperis organizedas follows. The next sec-
tion describes
�

theprogrammingmodelthatSUDSsupportsandthe
basichardwareandcompilersupportrequiredby SUDS.Section3
describesthe techniquesSUDSusesto forward truedependences,
renamefalsedependencesand speculateacrosspotentialdepen-
dences.Section4 containsboth a detailedcostbreakdown of the
basicmechanisms,andan empiricalstudyof how memorylaten-
ciesaffect theavailableparallelism.Section5 comparesSUDSto
previousmemorydependencespeculationsystems.Section6 con-
cludes.

2 Support for SUDS

SUDS parallelizesloopsby cyclically distributing the loop itera-
tionsacrossthesystem’s processingelements.Themain focusof
this paperis theruntimesupportthatSUDSprovidesfor handling
datadependences,describedin Section3. In this sectionwe de-
scribethe environmentin which SUDSruns. The parallelization
systemis basedontheassumptionthattheunderlyinghardwarein-
cludescertainmechanisms.Primarily theseincludetheassumption
that it providesa MIMD like parallelprogrammingmodel,where
therearemultiple threadsrunningin parallelandcommunicating
usingmessagepassing.Theparticularhardwarefor which SUDS
is targetedis discussedin Section2.1.

Theparallelizationmodelthatour systemsupportsis basedon
loops. In thecurrentversionof our system,theprogrammeris re-
sponsiblefor identifyingwhich loopsthesystemshouldattemptto
parallelize.This is doneby markingthe loopsin thesourcecode.
The parallelizationtechniqueswe usework with any loop, even
“do-across”loops,loopswith loopcarrieddependences,loopswith
non-trivial exit conditionsandloopswith internalcontrolflow. The
systemwill attemptto parallelizeany loopevenif theloopcontains
no availableparallelismdueto dataor control dependences.Our
future plansincludea systemto automaticallyidentify loopsthat
arelikely to containsignificantamountsof parallelism.

A potentialperformancelimitation of our systemis that the
compilerdoesnot currentlydo renamingon global scalars.This
canseverelylimit theavailableparallelismin programswritten us-
ing programmingstylesthatcommunicateextensively usingglobal
variables.We discussthis limitation in moredetail in Section3.4.
For theprogramswe investigatein this paper, which arewritten in
an “object-oriented”programmingstyle,we have not hada prob-
lem with this limitation. We arecurrentlyworking on a compiler
algorithmthat usesthe resultsof anexisting pointeranalysissys-
temto performcompilerrenamingevenfor programsthatrely ex-
clusively onglobalvariables.

2.1 Raw machines

Thehardwarewearetargetingis ahighly parallelsinglechipVLSI
architecture.Theprocessorasa whole is madeup of an intercon-
nectedsetof tiles (Figure1). Eachtile containsa simpleRISC-
like pipeline,instructionanddatamemoriesandis interconnected
with othertilesover apipelined,point-to-pointmeshnetwork. The
network interfaceis integrateddirectly into theprocessorpipeline,
sothatthecompilercanplacecommunicationinstructionsdirectly
into the code. The software can then transferdatabetweenthe
register files on two neighboringtiles in just 4 cycles. Designs
of this type have beencalledRaw architectures becausethey ex-
posecontrol of all of the communicationresourcesdirectly to the
compiler[22, 37].

This architectureis excellentfor signalprocessingapplications
becauseit providesenormousamountsof computebandwidth,and
many independentmemoryports. A Raw machinealsoprovides
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�
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�
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�
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�
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�

Raw  P

Figure1: Raw � P composition.Thesystemis madeup of multiple
tiles. Eachtile containsa processorpipeline with an integrated
network interfaceandinstructionanddatamemories.

threefeaturesthat are invaluablefor building a dependencehan-
dling system.First, the low latency communicationpathbetween
tiles is importantfor transferringtrue-dependencesthat lie along
the critical path. Second,the independentcontrol on eachtile al-
lows eachprocessingelementto be involved in a differentpart of
thecomputation.In particular, sometiles canbededicatedto per-
formingmemorydependencespeculationwhile othertilesactually
performcomputationfor the application. Finally, the many inde-
pendentmemoryportsavailableon a Raw machineallow thehigh
bandwidthrequiredfor supportingbotha cactusstackandparallel
accessto globaldatastructures.

3 Design

This sectiondescribesthedesignof theSUDSsystem.Achieving
thebesttotal systemperformancerequiresexposingenoughappli-
cation parallelismto useall of the systemresourceswhile mini-
mizing overheadsin the runtime system. We have achieved this
goal usinga numberof techniques.First, we have tried to do as
muchwork in thecompileraspossibleto relieve unnecessaryrun-
time costs. For example,mostof the work of memoryrenaming
in our systemis donein the compiler. In addition,whenchoos-
ing protocolswehave leanedtowardsthosethathave low overhead
per invocation,ratherthanthosethat exposethe mostapplication
parallelism.Finally, wehavefoundthatthehandlingof datadepen-
dencescanbedividedinto threeprimitive runtimeoperations,fast-
forwarding of true dependences,renamingof falsedependences,
and memory dependencespeculationfor potential dependences.
Theseparationof renamingfrom memorydependencespeculation
hasexposedmany simplificationsin theunderlyingsystem.

3.1 Chunk based work distribution

The SUDS systempartitions the processingelementsof the un-
derlying hardware systeminto two groups. Someportion of the
elementsarededicatedascompute nodes. The restarededicated
asmemory nodes.Oneof thecomputenodesis designatedasthe
master node,therestaredesignatedasworkers andsit in adispatch
loopwaitingfor commandsfrom themaster. Themasternodeis re-
sponsiblefor runningall thesequentialcode.

Whena parallel loop is encounteredthe masteris responsible
for telling all the workers which loop to run. Eachof the com-
putenodesis responsiblefor runninga singleiterationof theloop.
We call thesetof iterationsrunningin parallela chunk. Thecom-
putenodeseachrun a singleloop iteration,andthenall thenodes
synchronizethroughthe masternode. While this synchronization
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 int v, t
 t = recv(left)
 x = g(t)
 send(right,x)
v = A[t]

 A[b[t]] = v

 int v
 x = recv(left)
 v = A[x]
 A[b[x]] = v
 x = g(x)
 send(right,x)

for(i=0; i<N; i++) {
   u = A[x]
   A[b[x]] = u
   x = g(x)
}

   u = A[x]
   A[b[x]] = u
   x = g(x)

   u = A[x]
   A[b[x]] = u
   x = g(x)

anti-

true-

may true-

   int v
   v = A[x]
   A[b[x]] = v
   x = g(x)

true-

m
ay

 tr
ue

-

(c)  After renaming to eliminate the anti-dependence(b) Dependences in two adjacent iterations

int u, s
 s = recv(left)
 x = g(s)
 send(right,x)
 send(&A[s]&mask,{ld,&A[s]})
 u=recv(&A[s]&mask)
 send(&A[b[s]]&mask,{st,&A[b[s]],u})

int v, t
 t = recv(left)
 x = g(t)
 send(right,x)
 send(&A[t]&mask,{ld,&A[t]})
 v=recv(&A[t]&mask)
 send(&A[b[t]]&mask,{st,&A[b[t]],v})

while (true) {
  {type, pid, address, st_data} = recv()
  if (type == LD) {
    if (pid >= last_writer[address]) {
      last_reader[address] = pid
      send(pid, data[address])
    } else {
      MIS-SPECULATION DETECTED!
    } else if (type == ST) {
    if (pid >= last_reader[address]) {
      if (pid >= last_writer[address]) {
        last_writer[address] = pid
        data[address] = st_data
      }
      /* (pid < last_writer)
             => IGNORE BY THOMAS WRITE RULE */
    } else {
      MIS-SPECULATION DETECTED!
    }
  }
}

(a) Example loop nest

(d) After forwarding the true-dependence (e) After optimizing to reduce critical path length

(f)  After using SUDS to eliminate the may true dependence.

while (true) {
  {type, pid, address, st_data} = recv()
  if (type == LD) {
    if (pid >= last_writer[address]) {
      last_reader[address] = pid
      send(pid, data[address])
    } else {
      MIS-SPECULATION DETECTED!
    } else if (type == ST) {
    if (pid >= last_reader[address]) {
      if (pid >= last_writer[address]) {
        last_writer[address] = pid
        data[address] = st_data
      }
      /* (pid < last_writer)
             => IGNORE BY THOMAS WRITE RULE */
    } else {
      MIS-SPECULATION DETECTED!
    }
  }
}

       The psudo-code for two SUDS memory nodes are also given.

   int u
   u = A[x]
   A[b[x]] = u
   x = g(x)

 int u
 x = recv(left)
 u = A[x]
 A[b[x]] = u
 x = g(x)
 send(right,x)

 int u, s
 s = recv(left)
 x = g(s)
 send(right,x)
 u = A[s]
 A[b[s]] = u

Figure2: An exampleof how SUDSparallelizesa simpleloop.
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producessomeload imbalanceit alsodramaticallysimplifies the
protocols� for checkpointingof truedependencesandthevalidation
of memorydependencespeculationsasdescribedin Sections3.3
and3.5.

The applicationaddressspaceis cyclically distributed across
the memorynodesat the word (32 bit) granularity. During se-
quentialsectionsof the programthe memorynodessimply pro-
cesseachmemoryrequestandreplywith eitherloaddataor astore
acknowledgement.Duringparallelloopsmemoryrequestsmayar-
rive out of order, and the memorynodesmust both validatethat
theserequestsdon’t violate sequentialorderandprovide facilities
for rolling backto a consistentstatein thecasethata dependence
violation is detected.

3.2 Example

Figure2 givesa stepby stepdemonstrationof how our compiler
transformsa loop sothattheruntimesystemcanexploit theavail-
ableparallelism.Theloop containsa truedependenceon thevari-
ablex, ananti-dependenceonthevariableu andapotentialdepen-
denceontheaccessesto theglobalarrayA. Thesystemis basedon
theideathattheloop iterationswill bedistributedcyclically along
thecomputenodes.

Firstthecompilerpeformsrenamingontheprivatevariableu to
eliminatetheanti-dependence(Figure2(c)). Secondthecompiler
insertscommunicationinstructionsso that computenodeon the
left canforwardthevalueof variablex to thecomputenodeon the
right (Figure2(d)). Finally we performanoptimization,described
in Section3.3to reducethecritical pathlengthbetweenthereceive
of variablex and the correspondingsendoperationin the same
iteration(Figure2(e)).

Figure 2(f) shows how the codemight be mappedonto four
processingelements. The two elementson the top act as com-
putenodes,while the two processingelementson the bottomact
asmemorynodes,andrun thememorydependencevalidationpro-
tocoldescribedin Section3.5.

3.3 Forwarding true dependences

Thetaskof identifying loopcarriedtruedependencesis carriedout
by thecompilerin our system.Currently, our compilerusesstan-
dard dataflow analysistechniquesto identify scalarloop carried
dependences[26]. Any scalarvariablesmodifiedwithin the loop
nest,needto beeitherprivatizedby renaming(seeSection3.4) or
forwardedto the next iteration. If the compilerfinds that thereis
an inter-iterationdependenceon a particularvariableit insertsex-
plicit communicationinstructionsinto thecode.Thecompileruses
an analysissimilar to that usedby T.N. Vijaykumarfor the Mul-
tiscalar[36] to identify the optimal placementof communication
instructions.

At runtimethemasternodecheckpointsall theloopcarriedde-
pendencessothat if a mis-speculationoccursthecomputationcan
be rolled backto a consistentstate.Sinceonly the mastercheck-
pointsthis costcanbeamortizedover a numberof loop iterations.
Thedrawbackof thisapproachis thatwhenamis-speculationdoes
occur we may needto rollback slightly further than necessary.
So far we have not found this to be a problem. As discussedin
Section4, in the programswe have examined,the ratio of mis-
speculationsperchunkis low enoughthatit doesnotconstrainpar-
allelism.

Currently, our compileronly performsdependenceanalysisfor
scalars.For affine arrayaccessesa compilercould performarray
dependenceanalysisto identify array baseddependences.Note
thatthis compileranalysiscanbeoptimisticsinceforwardingnon-
dependentdatadoesnot violate sequentialsemanticsof the pro-
gram. This is optimistic in the sensethat it permitsthe register

allocationandlow-latency forwardingof the datavaluesin ques-
tion, ratherthancompletinga more expensive round trip request
to oneof thememorynodes.However, to reducethecritical path
cost, the compilerneedsto identify a minimal setof valuesto be
forwarded.

Another importantcompiler optimization is the reductionof
critical pathlengthsof truedependencechains.Many typical loops
usetheforwardedvaluesearlyin aniterationwhile preventingearly
forwardingby not updatingthevaluesuntil late in theiteration.In
the worst case,this will completelysequentializethe loop. How-
ever, in many casesit is possibleto calculateandforward thenew
valueassoonasthevaluefrom the previous iterationis received.
Thecompilercanreducethecritical pathlengthby makinga copy
of thedependentvariable,thenmodifying thevariable,andfinally
transformingall theusesof thevariableto usesof thecopy.

3.4 Renaming

Many scalars,arraysandotherdatastructuresthatareusedto prop-
agatevalueswithin a loop iterationarenormally definedoutside
the scopeof the loop body. This will createanti- and output-
dependencesacrosstheiterations,forcing theloop to beserialized.
Compileranalysiscanidentify thesevariablesby performingscalar
privatizationandarraydata-flow analysis. body [28, 23, 24, 34].
Privatizablevariablesareallocatedlocally in eachprocessorand
never communicatedoutside.

This local allocationis performedby creatinga secondsafe-
stack on which privatizablevariablesmay be placed. At runtime
eachcomputenodemaintainsits own local safe-stackandall pri-
vatizablevariablesareaccessedoff of thisstack.Thishastwo ben-
efits. First, this providesa cheapform of renaming.Eachprivati-
zablevariablecannow be independentlyaddressedon eachcom-
putenode.Thereis anadditionalcachingbenefitin thatvariables
thatmemoryreferencesto thesafe-stackarecompletelylocal to the
computenode,anddonotneedto becommunicatedto thememory
nodes.

3.5 Memory dependence speculation

The memorydependencespeculationsystemis in somewaysthe
coreof thesystem.It is the fall backdependencemechanismthat
worksin all cases,evenif thecompilercannotanalyzeaparticular
variable. Sinceonly a portion of the dependencesin a program
can be proved by the compiler to be privatizableor loop carried
dependences,a large fraction of the total memorytraffic will be
directedthroughthememorydependencespeculationsystem.As
suchit is necessaryto minimizethelatency of thissubsystem.

Themethodweuseto validatememorydependencecorrectness
is basedonBasicTimestampOrdering[4] a traditionaltransaction
processingconcurrency controlmechanism.As shown in Figure3,
eachprocessingelementwhich is dedicatedasa memorydepen-
dencenodecontainsthreedatastructuresin its local memory. The
first is anarraywhichis dedicatedto storingactualprogramvalues.
Thenext is a smallhashtablewhich is usedasa timestamp cache
to validatetheabsenceof memoryconflicts.Finally, thereis a log
whichcontainsa list of thehashentriesthatarein useandtheorig-
inal datavaluefrom eachmemorylocationthathasbeenmodified.
At the endof eachchunkof parallel iterationsthe log is usedto
eithercommitthemostrecentchangespermanentlyto memory, or
to roll backto thememorystatefrom thebegining of thechunk.

The validation protocol works as follows. Eachmemory lo-
cation hastwo timestampsassociatedwith it, one indicating the
last time a location was read(last-read) and one indicating
the last time a locationwaswritten (last-written). As each
load requestarrives,its timestamp(read-time) is comparedto
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timestamp
cache

log

data
memory

addr: data

last_reader
last_writer

tag

hash_entry

checkpoint
data

addr

hash

node_id

compare

Figure3: Datastructuresusedby thememorydependencespecu-
lationsubsystem.

the last-written stampfor its memorylocation. If read-
time 	 last-written thentheloadis okayandlast-read
is updatedto read-time, otherwisethe systemflags a mis-
speculationandabortsthecurrentchunk.

On a storerequest,its timestamp(write-time) is compared
first to thelast-read stampfor its memorylocation.If write-
time 	 last-read thenthestoreis okay, otherwisethesystem
flagsamis-speculationandabortsthecurrentchunk.Sothatastore
canberolled backin thecaseof a laterabort,theold valueof the
memorylocationis copiedinto thelog beforethenew storerequest
is executed.

We have implementedanoptimizationon storerequeststhat is
known astheThomasWrite Rule [4]. This is basicallytheobser-
vation that if write-time 
 last-written then the value
beingstoredby thecurrentrequesthasbeenlogically over-written
withouteverhaving beenconsumed,sotherequestcanbeignored.
If write-time 	 last-written thenthe storeis okay and
last-written is updatedaswrite-time.

The fact thatSUDSsynchronizesthe processingelementsbe-
tweeneachchunkof loop iterationspermitsusto simplify the im-
plementationof thevalidationprotocol. In particularthesynchro-
nizationpointcanbeusedto commitor roll backthelogsandreset
thetimestampto 0. Becausethetimestampis resetwe canusethe
requester’s physicalnode-idas the timestampfor eachincoming
memoryrequest.

In addition, the relatively frequentlog cleaningmeansthat at
any point in time thereare only a small numberof memory lo-
cationsthat have a non-zerotimestamp. To avoid wastingenor-
mousamountsof memoryspacestoring0 timestamps,wecachethe
active timestampsin a relatively small direct-mappedhashtable.
Eachhashtableentrycontainsa pair of last-read andlast-
written timestampsanda cache-tagto indicatewhich memory
locationownsthehashentry.

As eachmemoryrequestarrives,its addressis hashed.If there
is ahashconflictwith adifferentaddressthevalidationmechanism
conservatively flagsamis-speculationandabortsthecurrentchunk.
If thereis no hashconflict the timestamporderingmechanismis
invokedasdescribedabove.

Log entriesonly need to be createdthe first time a chunk
touchesa memorylocation, at the sametime an empty hashen-
try is allocated.Futurereferencesto thesamememorylocationdo
not needto be logged,as the original memoryvaluehasalready

Operation Cost
Dispatch 12
Validation 29
Log allocation 9
MessageReply 17
Log clean 7
Total 74

Table1: Amortizedcostbreakdown for a load operation.Subse-
quentloadsto thesameaddressdo not requireadditionallog allo-
cationor cleaningandthereforerequireonly 58cycles.

beencopiedto thelog.
In the commoncasethe chunkcompleteswithout suffering a

mis-speculation.At the synchronizationpoint at the end of the
chunk,eachmemorynodeis responsiblefor cleaningits logsand
hashtables.It doesthisby walking throughtheentirelog anddeal-
locatingtheassociatedhashentry. Thedeallocationis doneby re-
settingthetimestampsin theassociatedhashentryto 0.

If a mis-speculationis discovered during the execution of a
chunk, then the chunk is abortedand a consistentstatemust be
restored.Eachmemorynodeis responsiblefor rolling backits log
to the consistentmemorystateat the endof the previous chunk.
This is accomplishedby walking throughthe entire log, copying
thecheckpointedmemoryvaluebackto its original memoryloca-
tion. Thehashtablesarecleanedat thesametime.

In the next sectionwe give a breakdown of the costsof the
memorydependencespeculationsystemwehaveimplemented,and
show that thesecostsare nearly low enoughto achieve parallel
speedups.

4 Results

In this sectionwe presentresultsdemonstratingthat thereis hope
of building a softwarebasedspeculationsystemthat canachieve
parallelspeedups.In Section4.1,we presenta detailedcostbreak-
down of ourworking implementationof theSUDSmemorydepen-
dencespeculationsubsystem.In our currentimplementationthe
total worst-caseoverheadperloadoperationis about75 cycles. In
Section4.2,we presentsimulationresultsthatdemonstratethatfor
theapplicationswe areconsidering,this latency is within a factor
of about2 of whatis requiredto achieve parallelspeedups.Thatis
to say, theseapplicationsstill demonstratespeedupswith memory
latenciesof up to about30 cycles. First, we show how the appli-
cationsspeedup given an unrealisticallyperfectmemorysystem,
onewhereevery memoryoperationtakesexactly onecycle. Then
we show how eachapplicationperformsaswe vary the memory
latency.

4.1 Cost breakdowns

In this sectionwe breakdown the costsfor eachmemorydepen-
dencespeculationoperationin our currentimplementationof the
SUDSruntimesystem.Thememorydependencespeculationmod-
ulewasoriginally writtenin C.For thisstudywecompiledthecode
with theSunProCompilerversion4.2 at optimizationlevel 5, and
performedsomefurtherhandoptimization.We thenhandcounted
the numberof cycles for the resultingcodeassuminga simple5
stagescalarpipeline. This kind of pipelineis representative of the
kind of processingelementwe expectto be availableon eachtile
of a Raw processor[22, 37].
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Operation Cost
Rollback 10
Log clean 7
Total 17

Table2: Amortizedcostbreakdown for a rollbackoperation.

Table1 shows thebreakdown in costsfor a loadoperation.For
eachincoming requestthe systemfirst needsto dispatchon the
requesttype. The dispatchcodehasbeenoptimizedin favor of
load operationsbecausetheseoperationsareon the critical path.
For a loadrequestthedispatchrequires12 cycles.

The total cost for both validation and the actualmemoryac-
cessis 29 cycles. If this is thefirst accessto thememorylocation
sincethelastlog cleaningoperation,thenthesystemmustallocate
a new log entryat thecostof 9 cycles.This costis not incurredon
subsequentaccessesto thesamememorylocation.Finally, a reply
messageis constructedandlaunchedto theprocessingelementthat
madetheoriginal loadrequestata costof 17 cycles.

Laterwhenthechunkof paralleliterationsfinishes,thesystem
must incur an additionalcost to cleanthe logs for eachmemory
locationtouchedduringtheparallelchunk.Thiscleaningoperation
costs7 cyclesperlog entry.

In suma loadrequestrequiresatotalof 74cyclesof processing
from the memorynode. For a secondload requestto the same
memorylocationthelog entryneitherneedsto beallocatedor later
cleaned,sotheseadditionalloadrequestsrequireonly a totalof 58
cyclesof processingfrom thememorynode.

Table2 showsthecostof performingarollbackoperationin the
casethata mis-speculationoccursandthechunkof parallelitera-
tionsneedsto berolled back. This operationis performedin bulk
for all the memoryaddressesin the log, so the messagedispatch
costcanbeamortizedover a largeamountwork. For eachentryin
thelog thecheckpointedmemoryvalueneedsto becopiedbackto
memoryat a costof 10 cycles. In additionthe hashentry associ-
atedwith eachlog entrymustbecleanedat anadditionalcostof 7
cycles. Thetotal costof rolling backto a consistentmemorystate
afteramis-speculationis thenthesumof thesetwo costs,17cycles
permemorylocationtouched.

Discussion Thereareseveralmethodsthatwe areinvestigat-
ing to reducetheaveragelatency of eachloadrequest.Thefirst is
to modify theprotocolsothattheactualdatavalueis returnedto the
requesterbeforevalidationis performed.We believe thatthis opti-
mizationouldreducethelatency of eachloadoperationto about30
cycles,but it would notchangethebandwidthrequirementsplaced
on the memorynodes. A problemwith changingthe protocol in
thisway is thatit requiresthemasternodeto performanextrasyn-
chronizationtepwith thememorynodesat theendof eachchunk
to determinewhethera mis-speculationhasoccured.

Anothertechniquethathasbeenproposedby otherresearchers
for reducingboththeaveragelatency permemoryrequestandalso
the bandwidthrequirementson the memory is to place a small
cacheat the processingelementsto exploit locality in the mem-
ory referencestream.A problemwith this approachis keepingthe
cachescoherentwith oneanother, andtherehasbeena greatdeal
of active researchin this area[8, 13, 32,20, 17, 14]. We areinves-
tigating a techniquethat would allow SUDStocacheread-mostly
valuesby allowing thesystemto “permanently”markanaddressin
thetimestampcache.
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Figure4: Idealspeedupsasthenumberof computenodesis varied
from 1 to 8 if the memorydependencespeculationsystemwere
ableto deliver a result in a singlecycle. On 8 computenodesthe
speedupfor Healthis 3.756,thespeedupfor Jacobiis 2.895andthe
speedupfor LZW is 1.046.

Application Rateof Rollback
Health 2.3%
Jacobi 17%
LZW 3.8%

Table3: Rateat which parallelchunksmustberolled backdueto
mis-speculationon a systemwith 8 computenodesand16 mem-
ory nodes.Thesenumbersincludebothmemorydependencemis-
speculationsandbranchmis-speculations.
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Figure 5: The speedupson a systemwith 8 computenodesand
16 memorynodesas the cost of handlinga speculative memory
requestin thememorynodesis variedfrom 1 cycle to 128cycles.
The 74 cycle costfor a memoryoperationin SUDSis marked on
thegraph.Thecrossover point for achieving speedupsis 30 cycles
for Health,46 cyclesfor Jacobiand32 cyclesfor LZW. It maybe
possibleto reducetheaveragecostof memoryin SUDSto below 30
cyclesby usingacombinationof optimizedprotocolsandacaching
systemat thecomputenodes.

4.2 Application results

In this sectionwe examinethe questionof how fast the average
global memoryoperationneedsto be in order to achieve parallel
speedups.We find that in order to deliver speedupsthe memory
systemmusthave anaverageload latency of under30 cycles. Al-
thoughour systemcurrentlyhasa load latency of about75 cycles
we areencouragedthat we may be ableto achieve speedupswith
a reasonableamountof further engineering.As discussedabove,
betweenthehopeof furtheroptimizingtheprotocolat thememory
nodesandthepromiseof reducinglatency by puttingasmallcache
ateachof thecomputenodes,webelieve thatanaveragelatency of
30 cyclesis achievable.

We have conducteda studyon 3 applications,health, ja-
cobi andLZW. Health is one of the pointer intensive bench-
marksfrom theOldenBenchmarkSuite[5]. It performsanevent
drivensimulationof ahealthcaresystem.Its maindatastructureis
a treeof linkedlists. Jacobi is a densematrix implementationof
theJacobirelaxationalgorithm.While this algorithmis easilypar-
allelizedby acompiler, in theseexperimentsweuseonly theSUDS
compiler, which currentlydoesnot performany arraydependence
analysis. Our final benchmarkis LZW, an implementationof the
LZW decompressionalgorithm[38]. As well asperformingran-
dom accessesinto several arrays,this applicationis additionally
constrainedby having a large numberof true dependenceson its
critical path.For theseexperimentswe raneachapplicationwith a
relatively smalldataset.Weranthehealth benchmarkwith 341
hospitals,thejacobi benchmarkon a 50x50matrix andtheLZW
benchmarkwith a750bytecompressedenglishtext.

To collect somebasicperformancenumberswe developeda
simpledirect executionsimulator. We usea compilerbasedtool,
similar to pixie, to insertinstructioncountingcodeinto eachap-

plication program,andthenwe link togethertheapplicationcode
anda completeimplementationof the runtimesystemwhich has
beenportedto runonasetof UNIX processeswhichcommunicate
via UNIX pipes. Thecommunicationcodein the runtimesystem
is handannotatedto updatethe instructioncounterswith latencies
similar to thosethat might be found on a Raw processor. Oneof
thenicefeaturesof asimulationsystemlikethis is thatwecanvery
easilychangethecostsof variousportionsof the runtimesystem,
simply by changingtheamountsthat theprofiler chargesfor each
runtime operation. Another nice featureof this systemis that it
hasallowedusto usethefull suiteof UNIX programmingtoolsto
debug andtunetheprotocolsin theruntimesystem.

First we usedoursimulatorto produce“ideal” speedupcurves.
Theseareshown in Figure4. Herewehavesetthecostfor eachre-
questto thememorydependencespeculationsystemto 1 cycle. In
thiswayweareableto measurethemaximumspeedupthateachof
theseapplicationscanachieve, given an unrealisticallyfastmem-
ory system.The graphshows that whenthe programsarerun on
a systemwith 8 computenodesthespeedupfor health is 3.756
over sequentialexecution.Thespeedupfor jacobi is 2.895and
themaximumachievablespeedupfor LZW is 1.046. Thespeedup
for the LZW applicationis limited by Amdahl’s law becausethe
parallelloop accountsfor only abouta third of thetotal sequential
programexecutiontime.

Table3 shows that for health andLZW the systemhasvery
few mis-speculationsper parallel chunk. The jacobi applica-
tion exhibits a relatively largenumberof mis-speculations.These
mis-speculationsareall dueto branchmis-speculationsbecausethe
50x50input matrix doesn’t fit evenly onto 8 computenodes.The
resultis thatthefirst rows of thematrix areprocessedin 6 parallel
chunks.Whenprocessingthefinal chunksix of theeightcompute
nodesin thefinal chunkregistera branchmis-speculationbecause
they areattemptingto executebeyondtheloop limit. An inputma-
trix thatmappedevenly onto8 nodeswould not exhibit this prob-
lem.

Figure5 shows how theparallelspeedupis affectedby thecost
of eachload operation. For this experimentwe held the number
of computenodesconstantat 8, andthenumberof memorynodes
constantat 16. Thenwe varied the simulatedlatency of eachre-
questto the memorynodesbetween1 cycle (the ideal case)and
128cycles.Thegraphshows how thespeedupfor eachapplication
degradesasthememorylatency increases.For referencethegraph
alsoshows theline (speedup= 1) atwhicheachapplicationcrosses
over from getting parallel speedupto slowdown. The crossover
point for health occursat 30 cyclesper memoryrequest.The
LZW benchmarkcrossesover at 32 cyclespermemoryrequestand
jacobi achievesparallelspeedupup to 46cyclespermemoryre-
quest. The graphalso indicatesthe slowdowns that areachieved
by the currentimplementationof SUDSwith an averagememory
latency of 74 cycles.

5 Related work

Timestampbasedalgorithmshave long beenusedfor concurrency
control in transactionprocessingsystems. The memorydepen-
dencevalidation algorithm usedin SUDS is most similar to the
“basic timestampordering” techniqueproposedby Bernsteinand
Goodman[4]. Moresophisticatedmultiversiontimestampordering
techniques[30] reducethenumberof falsedependenciesdetected
by thesystemat thecostof a morecomplex implementation.Op-
timistic concurrency control techniques[21], like SUDS,take the
converseapproach,optimizing for the casethat operationsdo not
conflict.

Memory dependencespeculationis even moresimilar to vir-
tual time systems,suchas the Time Warp mechanism[16] used
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extensively for distributedeventdrivensimulation.This technique
is very! muchlike multiversiontimestampordering,but in virtual
timesystems,asin SUDS,theassignmentof timestampsto tasksis
dictatedby thesequentialprogramorder. In a transactionprocess-
ing system,eachtransactioncan be assigneda timestampwhen-
ever it entersthe system.More specificallyafter detectinga con-
flict a transactionprocessingsystemrestartswhichever transaction
detectsthe conflict, giving it a higher transactionnumberin the
process.SUDS must restartthe threadwith the later transaction
number.

Knight’s Liquid system[19, 18] useda methodmorelike op-
timistic concurrency control [21] except that timestampsmustbe
pessimisticallyassigneda priori, ratherthanoptimistically when
thetaskcommits,andwritesarepessimisticallybufferedin private
memoriesandthenwritten out in serialordersothatdifferentpro-
cessingelementsmayconcurrentlywrite to thesameaddress.The
ideaof usinghashtablesratherthanfull mapsto performindepen-
dencevalidationwasoriginally proposedfor theLiquid system.

Knight alsopointedout thesimilarity betweencachecoherence
schemesandcoherencecontrolin transactionprocessing.TheLiq-
uid systemuseda bus basedprotocolsimilar to a snoopingcache
coherenceprotocol [12]. SUDS usesa scalableprotocol that is
moresimilar to adirectorybasedcachecoherenceprotocol[6, 2, 1]
with only a single pointer per entry, sometimesreferredto as a
Dir1B protocol.

The ParaTran system for parallelizing mostly functional
code[33] was anotherearly proposalthat relied on speculation.
ParaTran wasimplementedin softwareon a sharedmemorymul-
tiprocessor. The protocols were basedon those used in Time
Warp[16], with checkpointingperformedat every speculative op-
eration.

SUDSis mostdirectly influencedby the Multiscalararchitec-
ture [9, 31]. The Multiscalararchitecturewasthe first to include
a low-latency mechanismfor explicitly forwarding dependencies
from onetaskto thenext. This allows thecompilerto both avoid
theexpenseof completelyserializingdo-acrossloopsandalsoper-
mitsregisterallocationacrosstaskboundaries.TheMultiscalarval-
idatesmemorydependencespeculationsusinga mechanismcalled
an addressresolutionbuffer (ARB) [9, 10] which is similar to
a hardware implementationof multiversion timestampordering.
From the perspective of a cachecoherencemechanismthe ARB
is mostsimilar to a full-mapdirectorybasedprotocol.

The SUDS compiler algorithms for identifying the optimal
placementpoints for sendingand receiving loop-carrieddepen-
dencesaresimilar to thoseusedin the multiscalar[36]. The pri-
marydifferenceis thattheMultiscalaralgorithmspermitsomedata
valuesto be forwardedmore than once, leaving to the hardware
the responsibilityfor squashingredundantsends. The SUDS al-
gorithmsguaranteeto insert sendand receive instructionsat the
optimalpoint in thecontrolflow graphsuchthateachvalueis sent
andreceivedexactlyonce.

More recenteffortshave focusedonmodifyingsharedmemory
cachecoherenceschemesto supportmemorydependencespecu-
lation [8, 13, 32, 20, 17, 14]. SUDSimplementsits protocolsin
softwareratherthanrelying on hardwaremechanisms.In the fu-
tureSUDSmight permit long-termcachingof read-mostlyvalues
by allowing thesoftwaresystemto “permanently”markanaddress
in thetimestampcache.

Anotherrecenttrendhasbeento examinethepredictionmech-
anismusedby dependencespeculationsystems.Someearly sys-
tems[19, 33,14] transmitall dependenciesthroughthespeculative
memorysystem. SUDS,like the Multiscalarallows the compiler
to staticallyidentify loop carrieddependenceswhich arethenfor-
wardedusing a separate,fast, communicationpath. SUDS and
other systemsin this classessentiallystatically predict that all
memoryreferencesthatthecompilercannotanalyzearein factin-

dependent. Severalrecentsystems[25, 35,7] have proposedhard-
waremechanisms,basedonruntimebranchprediction,for finding,
andexplicitly forwarding,additionaldependencesthatthecompiler
cannot analyze.

Memory dependencespeculationhas also beenexaminedin
the context of fine-grain instruction level parallel processingon
VLIW processors.The point of thesesystemsis to allow trace-
schedulingcompilersmoreflexibility to staticallyreordermemory
instructions.Nicolau[27] proposedinsertingexplicit addresscom-
parisonsfollowed by branchesto off-tracefixup code. Huanget
al [15] extendedthis ideato usepredicatedinstructionsto helppar-
allelize the comparisoncode. The problemwith this approachis
thatit requires"$#&% comparisonsif thereare " loadsbeingspec-
ulatively moved above % stores. This problemcan be alleviated
usinga smallhardwareset-associative table,calleda memorycon-
flict buffer (MCB), that holds recentlyspeculatedload addresses
andprovidessinglecycle checkson eachsubsequentstoreinstruc-
tion [11]. An MCB hasbeenproposedfor inclusionin theHewlett
Packard/IntelIA-64 EPICarchitecture[3].

TheLRPD test[29] is a softwarespeculationsystemthattakes
a more coarsegrainedapproachthan SUDS. In contrastto most
of the systemsdescribedin this section,the LRPD test specula-
tively blockparallelizesaloopasif it werecompletelydataparallel
andthenteststo ensurethat the memoryaccessesof thedifferent
processingelementsdo not overlap. It is ableto identify privati-
zablearraysand reductionsat runtime. A directorybasedcache
coherenceprotocolextendedto performtheLRPDtestis described
in [39]. SUDStakesa finer grain approachwhich cancyclically
parallelizeloopswith loopcarrieddependencesandcanparallelize
mostof a loop thathasonly a few dynamicdependences.

6 Conclusion

In this paperwe have investigatedthe issuesof whetherit is pos-
sible to build a softwarebasedspeculationsystemfor a Raw pro-
cessor. Our preliminaryresultsareencouraging.Throughsimula-
tion we’ve found that thememoryrequestlatenciesfor our work-
ing prototypesystemarewithin afactorof 2X thelatenciesthatare
requiredto achieve parallelspeedup.We wereableto reducethe
softwaresystem’s latenciesto this level by dividing thedependence
handlingprobleminto threeindependentsubproblems.Thesein-
clude forwarding true dependences,renamingfalsedependences
and providing memorydependencespeculationfor potentialde-
pendences.Moving theproblemof renaminginto thecompileren-
abledusto simplify theimplementationof thememorydependence
speculationsubsystem.

We believe that therearecachingtechniquesthat canbe used
to improve the averagememorylatenciesin our system,and we
areactively investigatinghow to integratecachesinto our system.
We believe that with this additionalengineeringeffort it will be
possibleto build anall softwarespeculationsystemwhichachieves
parallelspeedups.
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