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This article presents Cool-Mem, a family of memory system architectures that integrate conven-
tional memory system mechanisms, energy-aware address translation, and compiler-enabled cache
disambiguation techniques, to reduce energy consumption in general-purpose architectures. The
solutions provided in this article leverage on interlayer tradeoffs between architecture, compiler,
and operating system layers. Cool-Mem achieves power reduction by statically matching memory
operations with energy-efficient cache and virtual memory access mechanisms. It combines stati-
cally speculative cache access modes, a dynamic content addressable memory-based (CAM-based)
Tag-Cache used as backup for statically mispredicted accesses, different conventional multilevel
associative cache organizations, embedded protection checking along all cache access mechanisms,
as well as architectural organizations to reduce the power consumed by address translation in
virtual memory. Because it is based on speculative static information, a superset of the predictable
program information available at compile-time, our approach removes the burden of provable cor-
rectness in compiler analysis passes that extract static information. This makes Cool-Mem highly
practical, applicable for large and complex applications, without having any limitations due to
complexity issues in our compiler passes or the presence of precompiled static libraries. Based
on extensive evaluation, for both SPEC2000 and Mediabench applications, we obtain from 6% to
19% total energy savings in the processor, with performance ranging from 1.5% degradation to 6%
improvement, for the applications studied. We have also compared Cool-Mem to several prior arts
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1. INTRODUCTION

The memory system is a major source of power consumption in contemporary
processors. For example, the caches and translation lookahead buffers (TLB)
combined consume 23% of the total power in the Alpha 21264 [Gowan et al.
1998], caches draw 42% of the energy in the StrongARM 110 [Montanaro et al.
1997], and 23% in the PowerPC processor [Benini et al. 2000]. With the current
trend of ever-increasing on-chip cache sizes, the fraction of the power consumed
by caches is likely to further increase. In addition, address translation in con-
temporary memory systems is done with performance as the main objective,
accounting for a large fraction of power consumed in the memory system. This
trend fuels research to reduce power dissipation in memory systems by address-
ing power efficiency at all system layers: circuit, architecture, and/or software
levels.

Many of the recent architecture approaches proposed are based on the ob-
servation that not all memory system resources are required for all applica-
tions, and/or that there is a lot of resource utilization variation even within
the same application. The architectural remedies proposed (e.g., in the context
of caches [Benini et al. 2000; Kin et al. 1997; Huang et al. 2001; Inoue et al.
1999; Albonesi 1999; Villa et al. 2000; Balasubramonian et al. 2000]) are typi-
cally based on resizing of resources, driven by dynamic runtime information or
apriori application execution profiling.

In contrast, this article presents Cool-Mem, a family of memory system archi-
tectures that is enabled by speculative static compile-time information. Cool-
Mem integrates conventional memory access mechanism with compiler-enabled
techniques and energy-aware address translation to reduce energy consump-
tion, further blurring the interface between compiler and architecture. Our ex-
perimental results confirm our intuition, that combined compiler-architecture-
based designs open up smart new ways to reduce power consumption and in
many cases even improve application performance. The issues raised and solu-
tions provided in this article leverage interlayer tradeoffs in memory systems,
clearly affecting architecture, compiler, and even operating system layers.

But how can we benefit from static information? Cool-Mem uses static pro-
gram information about memory access types and patterns to reduce some of
the redundancy in conventional memory access mechanisms. This redundancy
in current memory system architectures is due to the general one-size-fits-all
design philosophy, where all memory accesses are treated equal, that is, as
having one single dynamic approach for all situations. For example, each mem-
ory operation typically requires a TLB access for virtual-to-physical address
translation or for protection checking, and every single associative cache ac-
cess requires associative lookup of multiple tags and cache blocks for one single
word returned. As we will show in this article, a large fraction of this redun-
dancy can actually be eliminated, resulting in significant power and energy
savings.

Cool-Mem architectural components include: (1) support for statically specu-
lative cache access modes, (2) a dynamic CAM-based Tag-Cache used as backup
for statically mispredicted accesses, (3) a conventional multilevel associative
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cache organization, (4) embedded protection checking along all cache access
mechanisms, and (5) a variety of techniques (this because we study a number
of different organizations, each with advantages and disadvantages) in sup-
porting power-aware address translation in virtual memory architectures.

Physically tagged and indexed caches require that cache indexing be over-
lapped with address translation for performance reasons. As translation is over-
lapped with the actual cache access, only the low-order offset bits (that do not
change with the translation) are available for cache indexing. With the growing
on-chip cache sizes, this is becoming more and more difficult, leaving virtually
tagged and indexed caches as a practical alternative [Patterson and Hennessy
1990].

Cool-Mem employs a virtually tagged and indexed cache as a first-level cache
and combines it with either a virtual or a physical second-level cache design,
with protection checks integrated along all cache access paths, including the
compiler-directed static access path, and moves address translation to upper
layers in the memory hierarchy to reduce the power impact of TLB accesses.
Cool-Mem can also integrate with physically indexed caches; In fact, good en-
ergy savings are obtained even for this case.

Furthermore, Cool-Mem uses speculative static information to predict cache
block translation reuse to eliminate the tag lookup for many memory accesses.
For sequences of memory accesses to the same cache line, Cool-Mem saves en-
ergy by storing the cache line mapping in Hotline registers and using these to
access that cache line directly. In the event of correct static speculation, we
could simply access the cache in a more energy-efficient way. In our previous
work [Unsal et al. 2001] we have shown that static speculation checking at run-
time can be efficiently implemented. As opposed to other approaches to reduce
energy based on predictable static information, which require program trans-
formations such as adaptive strip-mining [Moritz et al. 1999], our approach
does not affect code size and does not change the control-flow of the program.
Changing control-flow could otherwise impact on the efficiency of other compiler
optimization techniques and as a result degrade performance.

Additionally, a CAM-based Tag-Cache complements the static access mech-
anisms, playing a dual role: first, it complements the static access mechanism
by keeping around replaced cache mappings that were previously predicted
statically, and second, it can also be used to store cache mappings for the most
recently hitting cache tags for dynamic accesses, acting as a cache of cache-tags.
Here again, energy is saved on Tag-Cache hits by directly accessing a cache line.
As we will show in this article, this mechanism is very effective in filtering out
the effects of static mispredictions.

The Cool-Mem compiler extracts speculative static information, using it to
match different types of accesses to different cache access modes. Because it is
based on speculative static information, the burden of provable correctness in
the compiler analysis is removed. This makes our approach very practical, ap-
plicable for large and complex programs. The analysis can be completed without
having access to all the source codes, something that we have found to be very
useful, for example, in applications with frequent calls to precompiled static
libraries. Furthermore, the level of speculation can be decided at compile-time.
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The main contribution of Cool-Mem is providing a hybrid power-aware mem-
ory system solution, a design where conventional hardware techniques are
extended to support integration with compiler managed memory access tech-
niques, a system that is applicable and works for large and complex programs
without restrictions. To the best of our knowledge, there have been no efforts
on incorporating compiler-driven statically speculative techniques in general-
purpose memory systems for power and energy savings. Based on extensive
evaluation, for both SPEC2000 [Henning 2000] and Mediabench [Lee et al.
1997] applications, we obtained an energy savings from 6% to 19% in the
processor. The performance obtained ranged from 1.5% degradation to 6%
improvement.

The rest of this article is structured as follows. Section 2 presents the re-
lated work. Section 2.1 provides a discussion of design challenges in virtual
cache organizations. Next, we present some background on typical memory sys-
tem designs in Section 3. The Cool-Mem architecture is described in Section 4
followed by Section 5 on the compiler techniques. Section 6 details the exper-
imental framework used, Section 7 discusses the results, Section 8 contains
additional discussion, and we conclude the article in Section 9. The appendix
shows the compiler algorithm for extracting memory behavior (the Hotlines
algorithm) used in this study.

2. PREVIOUS WORK

Previous research focusing on TLB power consumption includes Juan et al.
[1997], which compared fully associative, set-associative, and direct-mapped
TLBs from a power perspective. They also proposed modifications to the basic
cells and the structure of set-associative TLBs to reduce power. Wood et al.
[1986] proposed the use of large virtually tagged and indexed caches to delay
the need for address translation until cache misses. Virtual to physical address
translation on cache misses was done by a hardware page table walking mecha-
nism. Cheriton et al. [1986] detailed the software-controlled caching mechanism
in the VMP multiprocessor. This is a TLB-less architecture with virtually ad-
dressed caches, with a software cache-miss handler. Their technique however,
focused on exploring coherence in a multiprocessor. Recent papers [Jacob and
Mudge 2001, 1997] also proposed a virtually addressed caching architecture
with a software-based cache-miss handler, but evaluated it only from a perfor-
mance perspective. Our approach used in Cool-Mem in the version that is based
on virtual-virtual cache hierarchies (we also consider and evaluate virtual-
physical and physical-physical memory hierarchies) adds a translation buffer
before accessing main memory, which reduces the overhead of address transla-
tion, improves performance, and has minimal impact on power consumption.

A sizable amount of work has been done toward improving the energy-
efficiency of caches. Kin et al. [1997] proposed a small L0 cache that saves energy
when data can be found in this cache, while degrading performance by 21%. A
cache way-predicting technique proposed in Inoue et al. [1999] saves energy on
correct prediction by accessing only the matching way instead of all the ways in
a set-associative cache. The recent paper by Huang et al. [2001] also proposed
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a similar way-prediction scheme. Their cache partitioning scheme included a
specialized stack cache and compiler implementation concerns were addressed.
Powell et al. [2001] combined way prediction with selective direct mapping to re-
duce cache energy consumption. Ma et al. [2001] proposed a deterministic way-
memoization scheme as an alternative to way-prediction. Content-addressable
(CAM) Tag-caches were examined for low power in Zhang and Asanovic [2000].
These techniques are purely architecture based, in contrast to our combined
compiler-architecture approach.

A compiler-enabled scheme was proposed in Moritz et al. [1999, 2001] in the
context of software caches for MIT-RAW processors. Our previous work for em-
bedded systems [Unsal et al. 2001] utilized a compiler-managed technique in
the context of embedded processors, in a tagless single-level cache organiza-
tion, using the MediaBench for evaluation. Our Cool-Mem compiler techniques
expand the scope to all types of memory accesses, handle complex program
structures, and support different levels of speculation. Additionally, Cool-Mem
focuses on multilevel memory systems incorporating virtual memory support.

Compiler-enabled techniques targeting cache energy also include the recent
work in Witchel et al. [2001]. Their scheme saves the tag-check energy when the
compiler can guarantee an access will be to the same line as an earlier access.
Their work is similar to the predictable cache access mechanism described for
RAW processors in Moritz et al. [1999]. Their approach requires a predictable
cache access to save power and it uses loop-unrolling as a way to achieve it.
Additionally, their technique works only for applications with fully predictable
data accesses, mainly focusing on affine array accesses and simple loop struc-
tures, and would not likely be applicable in general-purpose codes. As pointed
out in the introduction, our speculative scheme is scalable to large applications.
The solution provided in Cool-Mem does not affect instruction cache perfor-
mance by an increase in code-size or degrade the ability of traditional compiler
optimizations.

To the best of our knowledge, this is the first comprehensive work that
presents and evaluates a combined compiler-architecture scheme targeted at
general-purpose architectures, which extracts energy savings from the com-
plete memory system, including both the translation hardware and the cache
hierarchy.

2.1 Overview of Design Challenges with Virtual Cache Hierarchies

As mentioned in the introduction, physically addressed caches are becoming
less and less practical with the growing cache sizes. Cool-Mem proposes to build
on virtual cache hierarchies (several configurations are evaluated) that have
the advantage of moving address translation to lower levels in the memory
hierarchy and thus saving on power consumed for address translation (e.g.,
rather than doing address translation for every single memory access one would
need to do it only for L1 cache misses or for L2 cache misses depending on the
design).

Virtually addressed caches come with their share of problems, though. The
well-known synonym problem is detailed in Goodman [1987]. This problem

ACM Transactions on Computer Systems, Vol. 22, No. 2, May 2004.



Coupling Compiler-Enabled and Conventional Memory Accessing • 185

arises because in a multiprogrammed environment, multiple virtual ad-
dresses can map to the same physical address, to support efficient sharing/
communication between processes to avoid copying, or to support more ex-
pensive message-passing models that require kernel involvement. Both hard-
ware and software solutions to these problems have already been proposed in
Goodman [1987], Wheeler and Bershad [1992], and Wang et al. [1989]. This
problem is also primarily a concern in a virtual-virtual cache hierarchy and
could be easily dealt with in a hierarchy involving a virtually addressed first-
level cache and a physically addressed second-level cache [Wang et al. 1989].

Additionally, the problem can also be overcome by disallowing aliasing alto-
gether. This can be accomplished by providing a global address space model.
Another way is by forcing shared data to align in the cache, or by requiring
shared data to be noncacheable [Cheng 1987]. Furthermore, other solutions al-
low arbitrary aliases but implement a consistency protocol in hardware [Wang
et al. 1989].

Other hardware-based techniques aimed at dealing with the synonym prob-
lem are based on ideas such as back pointers [Wang et al. 1989] or dual tag
sets (having both a physical and a virtual tag, as in the ARM10 for example), or
reverse translation tables [Smith 1982] that translate physical addresses into
virtual addresses. Reverse address translation can possibly also use a similar
approach to the virtual-physical translation and leverage hardware support for
translation buffers similar to TLBs.

As mentioned earlier, a software-based solution to solve or avoid aliasing is
also possible, based on setting operating system policy. If energy efficiency is
an important design constraint, this approach together with other techniques
that avoid dealing with aliasing are to be preferred. The IBM OS2 operating
system, for example, places all shared segments at identical virtual addresses
in all process address spaces. SunOS uses a different approach; it aligns shared
pages on large virtual boundaries, making sure that aliases map to the same
cache block [Chen et al. 1992]. Single address space operating systems that
use global addresses would not have to deal with aliasing. Examples of such
systems include Opal [Chase et al. 1992] and Psyche [Scott et al. 1988]. Such
systems eliminate the need for virtual-address aliasing by having all shared
data through global references, allowing pointers to be shared freely.

A solution that has been used to deal with the problem of integrating phys-
ical IO into the virtual memory hierarchy is to use reverse translation tables;
a natural place to put that table is at the second level. Depending on how fre-
quently this translation is used, it will impact power consumption, however.
An important issue is how to deal with this problem in bus-based multipro-
cessor architectures based on snooping, when the second-level cache is also
virtual, and this translation is done frequently. One solution to that prob-
lem is to use both physical and virtual addresses on the bus, or only virtual
addresses if single global address space support is provided in the operating
system.

Another issue that can be raised, if a large second virtual level cache is used,
is the impact on the context-switch time. The concern is that if all the cache
blocks are required to be flushed and (some) written back to the next level in the

ACM Transactions on Computer Systems, Vol. 22, No. 2, May 2004.



186 • R. Ashok et al.

Fig. 1. The baseline memory system. All accesses require a TLB access and tag-checks.

memory hierarchy, this may cause a significant overhead. As shown, however,
by Goodman and Woest [1988] and Wang et al. [1989], this effect is negligible
for smaller caches such as L1, and can be handled efficiently for larger caches.
The idea is to use an additional bit per tag that is set during context-switch.
This bit together with the dirty and the valid bits can be used during block
replacements to distribute write-backs (require the use of write-buffers) in time
(i.e., they will happen during actual replacement and not once during context-
switch time), thus avoiding the cost of the latency associated with write-backs.
Additionally, having ASIDs (Address Space Identifiers) in the tag bits enables
smooth transition between processes. Direct memory accesses (DMAs) can be
supported by flushing affected cache blocks before the transfer or having regions
in the memory that are noncacheable.

3. BACKGROUND

Contemporary microprocessors have complex memory systems that differ from
each other in the way caches are accessed, TLB-misses are handled, etc.
Nonetheless, the defining features remain the same. To model these in our base-
line architecture, we have chosen an Alpha-like [Digital Equipment Corporation
1997] memory system architecture, with physically tagged and indexed caches.
Figure 1 shows the components of this architecture. Each memory instruction
has three operands: the destination register r1, the base register r2, and an
immediate offset. The base and offset are used to calculate the effective ad-
dress, shown as step 1 in the figure. The generated virtual address is 64 bits,
which consists of the virtual page number and offset, and an unused part that
sign-extends the virtual address. This virtual address is first translated into
a physical address by the TLB (step 2). Each access is associated with a 7-bit
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ASID, which is also fed to the TLB to check access rights. TLB misses are
handled by a hardware page-table walking mechanism.

The cache index component of the virtual address is used to index into one of
the cache sets. This enables the four cache lines and associated tags in that set
of the four-way cache (this can be extrapolated for higher-associativity caches).
The tag component of the virtual address is compared with the four cache-tags
in parallel (step 3). At the same time as these tags are being compared, the four
cache lines are accessed in parallel (step 3), and the cache-line offset is used
to index the required word in the lines. Depending on which of the cache-tags
match, if any, one of these words is selected and the access is satisfied. A miss
in the L1 cache goes to the L2 cache, which is similarly accessed.

The three energy-consuming components in an L1 access are: (1) fully asso-
ciative TLB access, (2) four parallel tag-checks, and (3) four parallel cache line
accesses. We target these components to extract energy savings in Cool-Mem.

4. COOL-MEM ARCHITECTURE

Conventional general-purpose microprocessors use a one-size-fits-all access
mechanism for all accesses. The Cool-Mem architecture derives its energy sav-
ings by providing different energy-efficient access paths that are compiler-
matched to different types of accesses. We proceed by providing an overview
of the Cool-Mem architecture and follow with detailed discussions on the key
features of this architecture.

We propose and evaluate several organizations. In both organizations we
use a virtually indexed and virtually tagged first-level cache and move address
translation to lower levels in the memory hierarchy (nevertheless, the Cool-
Mem architecture is general enough to be applied to physically tagged cache
hierarchies, as will be demonstrated in the results section). As second level, we
evaluate both a physically indexed and a virtually indexed cache. As described
in Section 2.1 some of the design challenges in virtual-virtual (v-v) organiza-
tions (e.g., the synonym problem, integration in bus-based multiprocessor sys-
tems, and context-switching with large virtual L2s) could be handled easier in
virtual-physical designs. In both organizations, we add translation buffers. In
the v-v organization, a translation buffer (MTLB) is added after the L2 cache
and is accessed for every L2 cache miss. We found this to serve better our en-
ergy optimization objectives than a TLB-less design, where address translation
is implemented in software. Nevertheless, if maximum flexibility is desired in
the way paging is implemented in the operating system, the TLB-less design
is a reasonable option, as shown by our experimental results. In the virtual-
physical organization (v-r), a translation buffer (STLB) is added after the L1
cache and is accessed for every L1 cache miss or every L2 cache access.

An overview of the different cache organizations with address translation
moved toward lower levels in the cache hierarchy is shown in Figure 2. As ad-
dress translation consumes a significant fraction of the energy consumed in the
memory system, both the v-v and v-r designs will save energy compared to a
physical-physical (r-r) cache hierarchy, where virtual-to-physical address trans-
lation is done for every memory access. Although TLB-less designs have been
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Fig. 2. Various cache organizations, with address translation moved toward lower levels in the
memory hierarchy. Cool-Mem is based on the virtual-virtual and virtual-physical designs. STLB is
the translation buffer between L1 and L2, and MTLB is the translation buffer added between L2
and main memory.

suggested in v-v types of organizations before, we are not aware of any proposal
where address translation is done with translation buffers for L2 cache misses,
as opposed to implemented in software exception handlers. Similarly, v-r de-
signs have been applied recently (e.g., StrongARM SA-1100 processor); these
designs typically do the address translation in parallel with the L1 cache access.
In addition, we are not aware of any work evaluating the power-performance
tradeoffs due to address translation in these organizations and in a design inte-
grated with compiler managed access paths. A context-switch between threads
belonging to different tasks may require change in virtual address mappings.
To avoid flushing the TLBs we added address-space identifiers to TLB entries.
Note that not having the address-space identifiers not only would require flush-
ing all the TLB entries, but would also imply that the newly scheduled thread,
once it started executing, would experience a number of TLB misses until its
working set was mapped.

Figure 3 presents an overview of the Cool-Mem memory system, with inte-
grated static and dynamic access paths. Cool-Mem extends the conventional
associative cache lookup mechanism with simpler, direct addressing modes,
in a virtually tagged and indexed cache organization. This direct addressing
mechanism eliminates the associative tag-checks and data-array accesses. The
compiler-managed speculative direct addressing mechanism uses the Hotline
registers. Static mispredictions are directed to the CAM-based Tag-Cache, a
structure storing cache line addresses for the most recently accessed cache lines.
Tag-Cache hits also directly address the cache, and the conventional associative
lookup mechanism is used only on Tag-Cache misses. Integration of protection-
checks along all cache access paths enables moving address translation to lower
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Fig. 3. The Cool-Mem memory system. Static accesses require an extra hlidx field. Notice the
absence of a TLB on L1. The ASID bits on each Hotline register, Tag-Cache entry, and each cache-
line in L1 and L2 caches provide protection checks. The Hotline check occurs at an earlier stage
than the Tag-Cache access.

levels in the memory hierarchy or TLB-less operation. In case of TLB-less de-
signs, an L2 cache miss requires virtual-to-physical address translation for
accessing the main memory; a software virtual memory exception handler can
do what is needed.

4.1 Support for Moving the TLB to Lower Levels in the Memory Hierarchy or
TLB-less Operation

Cool-Mem focuses on virtually addressed caches, and integrates support for pro-
tection checks, otherwise performed by the TLB, along all access mechanisms.
That is, Cool-Mem has embedded protection checks in the Hotline registers,
the Tag-Cache, and cache tags. Cool-Mem therefore could completely dispense
with the TLB. L2 cache misses in the v-v organization require address transla-
tion for the main memory access. Cool-Mem uses a translation buffer to speed
up this address translation, but a software virtual memory (VM) exception han-
dler for doing the translation on L2 cache misses and fetching the data from
the main memory can also be used. This would be a possible source of per-
formance overhead; however, if the L2 miss rate is much smaller compared to
the TLB miss rate (in our baseline r-r architecture), there may even be some
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performance improvement. Additionally, Cool-Mem can be integrated with r-r
memory hierarchies, as is shown in the results section.

4.2 Hotline Registers

The conventional associative lookup approach requires four parallel tag-checks
and data-array accesses (in a four-way cache). Depending on the matching tag,
one of the four cache lines is selected and the rest discarded. Now for sequences
of accesses mapping to the same cache line, the conventional mechanism is
highly redundant: the same cache line and tag match on each access. Cool-
Mem reduces this redundancy by identifying, at compile-time, accesses likely
to lie in the same cache line, and mapping them speculatively through one of
the Hotline registers (step 1 in Figure 3). As shown in Cortadella and Llaberia
[1992], the condition that the Hotline path evaluates can be done very efficiently
without carry propagation. This enables the Hotline check to be started before
the effective address calculation. The Hotline cache access can also be started in
parallel with the check, with the consequence that in case of incorrect prediction
some additional power is consumed in the data-array decoder. This power is
included in our experimental results using Wattch. As a result, the primary
source of latency for Hotline-based accesses is due to the data array access and
the delay through the sense amps. Note that conventional associative cache
designs require an additional multiplexer stage to select between ways in a
multiway access.

Furthermore, as shown in Reinman and Jouppi [2000], the critical path is
typically the tag-path; the tag latency can be as much as 30% larger than the
latency of the data-array path in the conventional design. As shown in Iyer
and Marculescu [2001], reduced feature sizes in next-generation architectures
will further accentuate the latency increase of the tag-path. Because of this,
in conventional cache designs, the way-selection logic is moved toward the
tag to balance the delay differences between the tag and data-array paths
[Reinman and Jouppi 2000]. However, in Cool-Mem the latency of the data-
array could be the main target for optimizations, as the tag-path is not on
the critical path for most of the memory accesses, by adequate bitline and
wordline partitioning. Additionally, as physical cache designs would require
the TLB access completed to perform the tag comparison (the tag access could
be, however, done in parallel), this may also add to the tag-path latency. As
such, we expect that a Cool-Mem-based microprocessor could either have a
faster clock or at least a faster cache access for statically predicted cache
accesses.

The different Hotline compiler techniques are described in Section 5. A sim-
ple runtime comparison (step 2) reveals if the static prediction is correct. The
cache is directly accessed on correct predictions (step 3), and the hotline regis-
ter updated with the new information on mispredictions. We have included a
fully associative lookup on the hotline registers to support invalidations.

As shown in Figure 3, the Hotline register has three components: (1) pro-
tection bits (ASID), which are used to enforce address space protection,
(2) TagIndex—two accesses are to the same cache line if their Tag and Index
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Fig. 4. Hotline-misses hitting the Tag-Cache. We found that aggressively speculative Hotline
accesses that cause Hotline-misses hit the Tag-Cache with good probability.

components are the same. The TagIndex component is compared with Tag and
Index of the actual access to check if the hotline register can indeed be used to
directly address the cache, (3) cache-way information—this information enables
direct access to one of the ways in the set-associative cache.

4.3 Tag-Cache

Another energy-efficient cache access path in Cool-Mem is the CAM-based Tag-
Cache. It is used both for static mispredictions (Hotline misses) and accesses not
mapped through the hotline registers, that is, dynamic accesses (step 4). Hence
it serves the dual role of complementing the compiler-mapped static accesses by
storing cache-line addresses recently replaced from the hotline registers, and
also saving cache energy for dynamic accesses; the cache is directly accessed on
Tag-Cache hits (step 3).

The motivation behind using the Tag-Cache as a backup mechanism for hot-
line registers is illustrated by the example in Figure 4. Due to the irregular
nature of a[b[i]] accesses, it is unknown at compile-time if successive accesses
are spatially close, that is, are likely to map to the same cache line, and there-
fore should be hotlined. The Cool-Mem compiler may aggressively map a[b[i]]
through a hotline register. Depending on the values of b[i] at runtime, the access
pattern for a[b[i]] may look as in Figure 4. The figure shows a[b[i]] mapping to
the same cache line c1 for some period. These accesses are obviously Hotline-
hits. Following this period, we have an access pattern such that successive
accesses map alternately to two cache lines, c2 and c3, respectively. The first ac-
cess misses both the Hotline and the Tag-Cache, and hence the Hotline register
and Tag-Cache are updated with pointers to c2. The next access maps to c3—
again the Hotline register and Tag-Cache are updated with c3. The key point
here is that the c2 pointer is replaced with the c3 pointer in the Hotline register,
whereas the Tag-Cache contains both c2 and c3 mappings. The following access
to cache line c2 is therefore a Hotline-miss but will be captured by the Tag-
Cache. In fact, because of the alternating pattern, all further accesses will be
Hotline-misses, but are captured by the Tag-Cache. In general, the Tag-Cache
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acts as a very good backup because it contains previously predicted hotline
entries and does a fully associative search on these.

Although the Tag-Cache access is very quick, we assume (conservatively)
that the Tag-Cache, accessed on hotline misses, requires another cycle, with
an overall latency similar to a regular cache access in an r-r organization. A
miss in the Tag-Cache implies that we fall back to the conventional associative
lookup mechanism with an additional cycle performance overhead (step 5). The
Tag-Cache is also updated with the new information on misses, in least recently
used (LRU) fashion. As seen in Figure 3, each Tag-Cache entry is exactly the
same as a Hotline register, and performs the same functions, but dynamically.

4.4 Associative Lookup

The Cool-Mem associative cache lookup is slightly different from the conven-
tional lookup in that the protection information (ASID) is also tagged to each
cache-line. Even the virtually addressed L2 cache is tagged with protection in-
formation in the v-v design to enable TLB-less L2 access. This increases the
area occupied by the tag-arrays, and also its power consumption. Compared to
the overall cache area and energy consumption, this increase is negligible.

5. COOL-MEM COMPILER

We have utilized the SUIF infrastructure for our compiler framework. The Cool-
Mem compiler is responsible for identifying groups of accesses likely to map to
the same cache-line, and mapping them through one of the hotline registers.
This hotline pass expands on our previous work [Moritz et al. 1999, 2001; Unsal
et al. 2001], adding support for various levels of speculation and leveraging-type
information to enlarge its scope to all types of memory accesses. As opposed to
our previous work, we do not use alias analysis. We found that for large applica-
tions such as those in SPEC2000, a flow-sensitive and context-sensitive analysis
is not practical because of complexity issues, static library calls, and complex
program constructs such as pointer-based calls and recursive procedures found
in many of these programs. Rather, we restricted ourselves to compiler analysis
that would make our system applicable to all type of applications, without lim-
itations. We are currently pursuing research in the direction of a speculative
flow-sensitive alias analysis that can be adapted to further complement the
techniques we describe here.

Some accesses are fairly regular and the compiler can map these through the
hotlines quite accurately. Other types of accesses are very hard to analyze at
compile-time. For such accesses, the compiler is not sure whether to map them
statically through the Hotline registers. This scenario motivates us to imple-
ment various levels of speculation in the Hotline pass. Specifically, we have
implemented two Hotline passes: (1) Optimistic Hotlines, where the compiler
tries to map all accesses through the Hotline registers, and (2) Conservative
Hotlines, which maps a subset of the accesses that are more regular in nature
and, as a result, are likely to cause fewer mispredictions. We now present these
two compiler techniques.
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Fig. 5. (a) Example with affine array accesses; (b) example with nonarray accesses. The numbers
in curly brackets are the Hotline registers assigned by the Hotline pass.

5.1 Optimistic Hotlines

The goal of Hotlines analysis is to identify memory accesses with high reuse
and map them to one of the hotline registers. There are four types of accesses
that we identify as having high reuse. They are the following:

(1) accesses having temporal reuse, for example, across loop iterations;
(2) accesses having self-spatial reuse across iterations:

for(i = 0; i < 100; i++)A[i] = · · · ;
(3) group-spatial accesses, for example, accesses A[i] and A[i+2] in a loop body;
(4) accesses having simple reuse, for example, a pointer that points to various

parts of small data structures that may have high cache-line reuse.

The Hotline pass works on a per procedure basis, see Algorithm 1 in the
appendix. The input to this algorithm is the set of hotline registers, {r1, r2, . . . ,
rh}, and the control flow graph (CFG) of the function. It parses through the CFG,
mapping each access through one of the Hotline registers. To decide which of the
h Hotline registers to map an access through, it compares this access with all the
h previous accesses currently mapped through the h Hotline registers, and finds
the one spatially closest to this access. If the distance between these is small
compared to the cache-line size, they are very likely to lie in the same cache-line,
and therefore the current access is mapped through the same Hotline register
as this closest access. Otherwise, the least recently used Hotline register is
picked, and the current access is mapped through this register. We chose the
threshold distance when two accesses are mapped to the same Hotline as half
the cache-line size.

In evaluating the distance between two accesses, the Hotlines pass leverages
control-flow, loop structure, and type information: field offsets in structures,
array element sizes, etc. Finding the distance between two accesses has running
time O(1). For each access, the Hotlines pass has to compute h such distances.
Therefore, if a procedure has n memory accesses, the Hotline algorithm has
running time O(nh). We now illustrate the working of this algorithm with some
simple examples.

Figure 5(a) shows an example with array accesses within a loop that have
constant index differences. Suppose the array element size is 4 bytes and the
cache line is 64 bytes, implying a threshold distance of 32 bytes. The Hotline
analysis first assigns a[i] Hotline register r1. When it comes to a[i+1], it checks
the distance from currently mapped accesses, and finds the closest one to be
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Fig. 6. (a) Example with irregular array accesses; (b) example with pointer-based accesses. An “x”
in curly brackets means that the access is not Hotlined.

a[i] which is 4 bytes apart. Since this is less than the threshold, a[i+1] is also
mapped through r1. Similarly for a[i+100], the closest access, a[i+1], is found
to be 396 bytes apart, and hence a[i+100] is mapped through a different hotline
register r2. Because a[i+103] is within the threshold distance from a[i+100], it
is mapped through r2.

The Cool-Mem compiler technique is not limited to arrays. Figure 5(b) shows
how nonarray accesses are treated. Suppose var1.field1 has been assigned r1. If
the field offsets for field1, field2, and field10 in the structure variable var1 are
0, 4, and 40, respectively, the hotline pass will map field2 through r1 (distance
4 bytes from field1 < threshold) and field10 through r2 (distance 36 bytes from
field2 > threshold).

5.2 Conservative Hotlines

This flavor of the Hotline pass is more selective in mapping accesses through
Hotline registers. It works in almost the same manner as the Optimistic Hot-
lines algorithm, and also has a running time of O(nh). The key difference is the
logic for selecting which accesses to map through Hotline registers.

Our experiments have revealed that pointer-based accesses typically have
low static prediction rates, especially without the information provided by a
precise alias analysis pass. Nonaffine array accesses of the form a[b[i]] are also
a prime source of mispredictions. The Conservative Hotlines pass does not map
these two types of accesses through the hotlines. This conservative approach
thus maps fewer accesses through the hotline registers than the Optimistic
scheme, but hopes to achieve better prediction rates for these accesses.

Figure 6(a) gives an example with nonaffine array accesses. Due to the irreg-
ular nature of this access, it has the potential for causing many mispredictions.
The Conservative Hotlines algorithm does not hotline this access. If b[i] turns
out to be very regular, for example b[i] = i, then hotlining this access makes
sense. This is, however, very unlikely, and the Conservative Hotlines algorithm
achieves a better prediction rate than its optimistic counterpart in most cases.

Figure 6(b) presents an example with pointer-based accesses. The linked-list
structure referenced by p is also unpredictable. Dynamic allocation, insertions,
and deletions mean that the memory layout of the list is very irregular. Hence, it
would be unwise to assume that successive nodes in the list are spatially close.
The conservative approach chooses not to hotline pointer-based accesses at all.

ACM Transactions on Computer Systems, Vol. 22, No. 2, May 2004.



Coupling Compiler-Enabled and Conventional Memory Accessing • 195

Fig. 7. Shaded steps are the ones introduced by Cool-Mem.

6. EXPERIMENTAL FRAMEWORK

6.1 Compiler

We have used the SUIF/Machsuif suite as our compiler infrastructure. Figure 7
traces the steps involved in going from the source code to alpha binary code.
The source files are first compiled into SUIF code and merged into one file.
All the high-level compiler analysis passes, including the hotline pass, oper-
ate at this stage. The hotline pass assigns hotline registers to memory ac-
cesses by annotating them. The annotations are propagated to the binary file
through the intermediate stages. These Alpha binaries are simulated on the
SimpleScalar [Burger and Austin 1997] simulator with all the required modi-
fications in place.

6.2 Simulator

We have used the SimpleScalar [Burger and Austin 1997] simulator with
Wattch [Brooks et al. 2000] extensions for collecting performance and energy
numbers. This simulator, capable of running statically linked alpha binaries,
has been modified to accommodate the Cool-Mem architecture. It also has the
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Table I. Benchmarks Used for Evaluation

Benchmark Description

ADPCM Adaptive Differential Pulse Code Modulation coder (Mediabench)
EPIC Image compression utility based on wavelet decomposition (Mediabench)
G721 Voice compression based on G.711, G.721, and G.723 standards (Mediabench)
JPEG A lossy image compression decoder (Mediabench)
MPEG Lossy motion video compression decoder (Mediabench)
RASTA Speech recognition front-end processing (Mediabench)
MCF Combinatorial optimization, single-depot vehicle scheduling (CPUInt00)
PARSER Word processing, synthetic English parser (CPUInt00)
VPR CAD FPGA circuit placement and routing (CPUInt00)
AMMP Computational chemistry (CPUFP00)
ART Image recognition using neural networks (CPUFP00)
EQUAKE Simulation of seismic wave propagation in large valleys (CPUFP00)

Table II. Baseline System Parameters

Parameter Baseline value

Processor speed 1.5 Ghz
Process technology 0.18 µm, 2 V
Hotline registers 32
TAG-Cache size 32-entry
Fetch/Issue/Decode width 4-way out-of-order
Integer units 4
Floating-point units 4
ITLB 64-entry Fully assoc.
DTLB 64-entry Fully assoc., dual ported
TLB-miss penalty 20 cycles
L1 D-cache 64k, 4-way, 64byte line, dual ported
L1 I-cache 64k, 4-way, 64byte line
Unified L2 cache 512k, 4-way, 128b line
L1 D-Cache latency 3 cycles
L2 latency 20 cycles
Main memory latency 200 cycles + 2 cycles/word

modification required to recognize the annotated load/store instructions as Hot-
line accesses.

6.3 Benchmarks

We have used the CPU2000 [Henning 2000] and Mediabench [Lee et al. 1997]
applications for evaluation purposes. Six Mediabench and six CPU2000 bench-
marks have been randomly chosen; see Table I. To keep the excessively large
simulation time for the CPU2000 benchmarks within manageable limits, we
skip the first 500 million instructions and simulate the next 1 billion instruc-
tions, similarly to Sair and Charney [2000].

7. RESULTS

In this section, we compare the Cool-Mem family with the baseline architecture.
In these experiments, we have accounted for the energy consumed by all the
added hardware blocks and any slowdown incurred. Table II shows the baseline
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Table III. Power Consumption Breakdown for the L1 D-Cache
in Cool-Mem

Hardware block “ON” Power consumption

32 Hotline registers 0.108211 W
32-Entry Tag-Cache 1.0237 W
Associative Data-array access 9.59838 W
Associative Tag-array access 1.53072 W

Table IV. Processor Power
Consumption Breakdown

Hardware block

I-TLB 0.99%
D-TLB 1.99%
L1 I-Cache 6.37%
L1 D-Cache 12.7%
L2 Unified Cache 5.41%
Branch Pred. 5.27%
Register File 4.16%
Integer ALU 5.42%
Floating-point ALU 16.6%
Clock Power 34.2%
Other 6.81%

system configuration; Table III shows the power consumption breakdown for
the L1 D-Cache in Cool-Mem.

Table IV shows the power consumption breakdown for the various processor
components. These static figures assume “maximum power” operation, that is,
that all the units are fully active on all the ports with maximum switching
activity. During execution, though, the memory hierarchy (TLBs and Caches)
may be more stressed than the floating-point unit, for some applications, say. In
such cases, the power consumption due to the memory system will account for
a higher fraction than that reported in this table. Also note from the table that
the clock dissipation accounts for a seemingly unreasonably large portion. One
reason is that Wattch somewhat overestimates the clock energy by considering
a model that is uniform across the whole chip. Unfortunately, a fully accurate
model would require a more detailed low-level analysis of clock power, which is
beyond the scope of this paper. Further, the clock power, as modeled by Wattch,
accounts for all clock capacitance, including clock nodes within individual units,
that is, power dissipation in clock nodes that are internal to various hardware
structures is counted toward the global clock power rather than the particular
hardware units.

The Hotlined load/store instructions require an additional 5 bits (for a Hot-
line register file size of 32). We have tried to quantify the effect of this by running
experiments with one extra instruction per basic block. Figure 8 shows the per-
formance degradation due to this for different fetch/issue/decode widths. Our
results show that the code dilution can be kept below 5% if only critical blocks
are optimized. For example, more than 90% of the runtime has been captured
with less than 35% of the instructions. That is, the dilution is affecting only
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Fig. 8. Performance degradation for one-, two-, and four-way issue processors.

35% of the code. As seen in the figure, the runtime performance overhead is
minimal if there are at least two functional units. In a two-way issue processor,
the overhead was less than 5% and in a four-way issue like the one evaluated
in our experiments, less than 1% for the applications studied. Note that in a
real implementation, that overhead could be optimized across other optimiza-
tions than those applied in Cool-Mem, for example, similar compiler-enabled
techniques for the I-cache and perhaps fetch throttling [Unsal et al. 2002].

In the following sections, we first show Cool-Mem results with identical
system configuration as the baseline (see Table II), for both the virtual-real
Cool-Mem architecture (v-r) and the virtual-virtual Cool-Mem architecture (v-v)
(overall numbers are presented for a real-real Cool-Mem architecture as well).
Next, we present sensitivity results by changing certain baseline parameters,
that is, cache line size, Hotlines register-file size, TAG-Cache size, Cache size,
Optimistic versus Conservative Hotlines, and hardware TLB- versus software-
managed address translation.

7.1 Baseline Cool-Mem Results

The difference between v-r and v-v designs is after the L1 cache layer (TLBs
are between L1 and L2 in v-r and after L2 in v-v), and, therefore, the L1 D-
Cache is accessed exactly the same way in both v-r and v-v. Hence, the energy
and performance numbers for the Hotlines, the TAG-Cache, and the L1 caches
were the same for both v-r and v-v. These results are discussed in the following
paragraphs.

Figure 9(a) shows the percentage of accesses that were Hotlined and the hit
rate on these accesses. On average, 37% of the accesses for CPU2000, and 45%
of the accesses for MediaBench, were hotlined. The remaining accesses, that is,
the dynamic accesses, were caused primarily by library calls, the source code of
which was unavailable during the Hotlines analysis stage. For example, “rasta”
made heavy use of the math library calls, and the nonlibrary memory operations
were thus a small fraction of the total. As to the hit rates, 56% of the static spec-
ulations in CPU2000 and 79% in MediaBench turned out correct on average.

The performance penalty due to the mispredictions was diluted by the backup
mechanism: the TAG-Cache. Shown in Figure 9(b), the TAG-Cache absorbed
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Fig. 9. Baseline results.

47% of the mispredictions in CPU2000 and 87% in Mediabench. Further, as will
be shown, the static hit rate for CPU2000 can be improved with Conservative
Hotlines analysis. Figure 9(b) also shows the TAG-Cache hit rate on dynamic
accesses: This averaged 87% for CPU2000 and 88% for MediaBench applica-
tions. The overall hit rate was 79% and 89% for CPU2000 and MediaBench
applications, respectively.

Figure 9(c) shows the L1 D-Cache access patterns for CPU2000 and Media-
Bench applications. The lower bars are the 2-cycle static hits, the middle bars
are the 3-cycle TAG-Cache hits, and the upper bars are the 4-cycle TAG-Cache
misses that are L1 hits, and the rest are L1 misses. Figure 9(d) shows the rela-
tive energy consumption in the L1 D-Cache, broken down into various compo-
nents. 100% corresponds to the L1 D-cache energy consumption in the baseline
architecture. The average relative consumption value was 38% for CPU2000
(or 62% cache energy savings) and 30% for MediaBench (70% savings).
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Fig. 10. Baseline results.

We now move beyond the L1 cache and present overall energy and per-
formance results. Here we have also presented experimental results for a
Cool-Mem architecture based on a physically tagged cache hierarchy (r-r). In
Figure 10(a), we show the performance gains in r-r, v-r, and v-v. The r-r design
resulted in performances ranging from 0.44% degradation to 5.72% improve-
ment. The difference in performance, compared to the baseline, was due to
the faster Hotlines access mechanism as well as the overhead on TAG-Cache
misses. For most applications, the performance benefits due to Hotline hits out-
weighed the overhead due to TAG-Cache misses, and an overall improvement
was observed. Average performance gains of 0.38% for CPU2000 and 3.4% for
MediaBench were achieved.

For the v-r design, we got performances ranging from 1.43% degradation to
5.65% improvement. On average, a miniscule 0.26% performance degradation
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Fig. 11. Varying levels of speculation in the Cool-Mem compiler.

for CPU2000 and 3.35% improvement for MediaBench were achieved. Com-
pared to the r-r design, a small degradation observed for some applications was
because the TLB was now on the L2 access path, making L2 accesses more
expensive by 1 cycle.

The v-v design had higher performance gains: 1.91% for CPU2000 and 3.35%
for MediaBench applications on average, with an overall range of −0.64% to
5.65%. The better figures for v-v were because there were fewer TLB misses in
v-v (TLB accessed on L2 misses in v-v as against on L1 misses in v-r). For v-v, the
TLB was on the main memory access path, making these accesses costlier by a
cycle. An application with sufficiently high L2 miss rate can get a degradation
because of this penalty (e.g., “art”).

Figure 10(b) shows the total energy savings for the three designs. A portion
of the energy savings was due to reduction in clock energy consumption: as
energy consumption in the caches was reduced, the clock energy consumption
also came down because clock energy is directly proportional to chip-activity. For
the r-r design, the savings came from the L1 D-cache mainly, whereas in v-r and
v-v designs, energy savings were also obtained in the TLBs. Excellent energy
savings were obtained, averaging 13% for CPU2000 and 10% for MediaBench
in the r-r design, and the corresponding numbers being 18% and 15% in the v-r
and v-v designs, respectively.

The energy-delay product is plotted in Figure 10(c). For CPU2000, the av-
erage energy-delay products were 80.8% for r-r, 86.6% for v-r, and 82.3% for
v-v. These numbers follow the performance trend: on average for CPU2000, r-r
had the best performance, followed by v-v and v-r. For MediaBench, the average
energy-delay products were 82.3% for r-r, 86.9% for v-r, and 82.3% for v-v. Again
r-r and v-v had better results than v-r due to better performance numbers.

7.2 Sensitivity Analysis

In this subsection, we evaluate the sensitivity of Cool-Mem to various architec-
tural and compiler parameters.

7.2.1 Optimistic versus Conservative Hotlines. The motivation behind hav-
ing Optimistic and Conservative versions of the Hotline analysis was to filter
out the less regular accesses and not map these through the Hotline registers
in the Conservative scheme. This, we hoped, would lead to an improvement in
the Hotline hit rate. Figure 11 shows the Hotline hit rates for the two versions.
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Fig. 12. Sensitivity to Hotline register-file and TAG-Cache sizes.

The Conservative approach did improve the hit rate for CPU2000 applications
by 13% on average. The Mediabench applications performed almost the same in
both cases. This was because these media applications have very regular access
patterns; there aren’t many irregular accesses that the conservative approach
can filter out.

A few of the applications which had low static hit rates with the Optimistic
technique didn’t gained much from the Conservative technique (e.g., “vpr,” “art,”
“mpeg”). This was because some of the affine array accesses hotlined by the
Conservative algorithm had very big strides, and therefore should not have been
hotlined. But the compiler may be unable to determine the stride at compile
to decide whether or not to hotline this access. An even more conservative
approach would be not to hotline even affine array accesses, when the stride is
not known at compile time.

7.2.2 Hotline Register-File and TAG-Cache Sizes. Figure 12(a) looks at the
static hit rate with an increasing number of Hotline registers. For a smaller
number of Hotline registers, there is a higher change of conflicts, that is, two
spatially far-apart accesses being assigned the same register. As expected, we
saw an improvement in the hit rate with an increasing number of Hotline
registers. Saturation occurred around 16 registers, with minor improvement
going to 32 registers. This suggests that most of the innermost loops of these
programs have at most about 10 Hotlined accesses.

Figure 12(b) shows the TAG-Cache hit rates for different sized TAG-Caches.
The “epic” and “mpeg” benchmarks saw a big improvement when the TAG-
Cache size increased from 16 to 32 entries. For other applications, there was

ACM Transactions on Computer Systems, Vol. 22, No. 2, May 2004.



Coupling Compiler-Enabled and Conventional Memory Accessing • 203

Fig. 13. Sensitivity to cache-line size.

a very gradual improvement with increasing TAG-Cache size, with saturation
occurring at a TAG-Cache size of 32 entries.

7.2.3 Cache Line Size. Figure 13(a) shows how the variation in Hotline
hit rate with increasing L1 D-cache line sizes. The static hit rate is seen to be
fairly sensitive to cache line size: As line size increased, the Hotline hit rate
also increased. This was expected, because the likelihood of an access map-
ping to a particular cache line increases as the line size increases. The same
argument should also hold for Tag-Cache hit rates. Indeed, the Tag-Cache hit
rate also increased with increasing cache line size, as shown in Figure 13(b).
However, there was a second-order effect of increasing line size: as the Hotlines
hit rate increased with increasing line size, the remaining Hotline mispredic-
tions became more and more irregular; that is, the TAG-Cache hit rate on the
Hotline mispredictions went down with increasing line size. This second-order
effect may sometimes manifest itself in an overall lowering of the TAG-Cache
hit rate with increasing line size (i.e., “mpeg” in Figure 13(b)).

Figure 14(b) shows performance gain for v-r with increasing line sizes. Most
of the applications showed improved performance with bigger line sizes. This
was because these applications exhibited considerable spatial locality: the L1
hit rate went up when cache line size was increased from 32 bytes to 512 bytes.
Another reason for the improved performance was better Hotline and TAG-
Cache hit rates with bigger line sizes. Exceptions to the trend were “mcf,” “vpr,”
and “ammp.” These applications didn’t show as much spatially locality as the
others: the L1 miss rate went up with increasing line sizes, resulting in perfor-
mance degradation.
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Fig. 14. Sensitivity to cache line size.

Figure 14(a) shows the variation in energy savings with increasing line sizes
for v-r. Bigger lines caused more energy dissipation in the data-arrays of caches,
meaning that cache energy savings vanished very quickly with increasing line
size. This was the reason for the general downward trend in energy savings.
Such applications as “mcf” and “vpr” suffered from higher L1 miss rates with
larger cache lines, as stated in the last paragraph. They incurred a further en-
ergy penalty because of this, as L2 accesses consumed more energy than L1 ac-
cesses, and thus the sharp diminishing of energy savings for these applications.

Figure 14(c) gives the sensitivity of the energy delay product for increasing
line sizes. A line size of 64 bytes generally gave the best result.

7.2.4 Cache Associativity. Table V shows the relative performance for the
r-r, v-r, and v-v Cool-Mem designs based on four-way and two-way associative
caches. Performance values are scaled relative to the baseline for the given
cache associativity; values lesser than 1 indicate performance gain and values
greater than 1 an overhead (for example, a value of 0.5 means the application
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Table V. Sensitivity to Associativity: Delay

4-way 2-way
Benchmark r-r v-r v-v r-r v-r v-v

mcf 1.00 1.01 0.97 0.99 1.02 0.98
vpr 1.00 1.00 0.96 0.99 1.00 0.96
equake 0.97 0.98 0.97 0.97 0.98 0.97
parser 1.00 1.01 1.00 1.00 1.01 1.00
ammp 1.00 1.01 0.99 1.00 1.01 0.99
art 1.00 1.01 1.01 1.00 1.01 1.00
jpeg 0.94 0.94 0.94 0.94 0.94 0.94
mpeg 0.97 0.97 0.97 0.97 0.97 0.97
rasta 0.99 0.99 0.99 0.95 1.00 0.99
epic 0.96 0.96 0.96 0.96 0.96 0.96
adpcm 0.97 0.97 0.97 0.97 0.97 0.97
g721 0.96 0.96 0.96 0.96 0.96 0.96

Table VI. Sensitivity to Associativity: Energy

4-way 2-way
Benchmark r-r v-r v-v r-r v-r v-v

mcf 0.87 0.82 0.82 0.86 0.86 0.86
vpr 0.86 0.81 0.80 0.84 0.84 0.84
equake 0.88 0.83 0.83 0.87 0.86 0.86
parser 0.87 0.81 0.81 0.84 0.85 0.85
ammp 0.86 0.82 0.84 0.86 0.86 0.88
art 0.88 0.83 0.83 0.86 0.86 0.86
jpeg 0.89 0.83 0.83 0.86 0.86 0.86
mpeg 0.92 0.87 0.87 0.90 0.89 0.89
rasta 0.85 0.80 0.80 0.83 0.84 0.84
epic 0.89 0.85 0.85 0.88 0.87 0.87
adpcm 0.94 0.90 0.90 0.93 0.91 0.91
g721 0.91 0.86 0.86 0.89 0.88 0.88

completed in only half the cycles, etc.). Similarly, energy savings and the energy-
delay product are shown in Tables VI and VII, respectively.

7.2.5 Cache Size. Figure 15 shows the percent of static hits, TAG-Cache
hits, L1 hits, and L1 misses for three different cache sizes. The static and TAG-
Cache hit rate was almost independent of cache size. This was because the
Hotline registers and the TAG-Cache entries stored information for the most
recently used 32-cache blocks, and as long as the cache had more than 32 blocks,
the hit rates stayed the same. Obviously, the L1 miss rate went down with
increasing cache size.

7.2.6 TLB versus Software-Managed Address Translation. Figure 16
shows the performance improvement for v-v over the baseline, for two cases:
(1) TLBs were present, and (2) address translation was managed by software.
We charged 20 cycles as the average time for software-based address trans-
lation (which is reasonable, given that the software-based TLB miss handler
was 20 cycles). Software-managed address translation is more flexible than the
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Table VII. Sensitivity to Associativity: Energy-Delay Product

4-way 2-way
Benchmark r-r v-r v-v r-r v-r v-v

mcf 0.87 0.83 0.80 0.85 0.87 0.83
vpr 0.86 0.81 0.77 0.84 0.85 0.80
equake 0.85 0.81 0.80 0.84 0.84 0.83
parser 0.87 0.82 0.81 0.84 0.85 0.84
ammp 0.86 0.83 0.83 0.86 0.86 0.86
art 0.88 0.84 0.83 0.86 0.87 0.86
jpeg 0.83 0.78 0.78 0.81 0.81 0.81
mpeg 0.89 0.85 0.85 0.87 0.87 0.86
rasta 0.85 0.79 0.79 0.79 0.83 0.83
epic 0.86 0.81 0.81 0.84 0.84 0.84
adpcm 0.92 0.88 0.88 0.90 0.89 0.89
g721 0.87 0.82 0.82 0.85 0.84 0.84

Fig. 15. Hotlines and TAG-cache sensitivity to cache size.

Fig. 16. v-v Performance: with TLBs versus with software managed address translation.

TLB solution; for example, problems associated with virtual addressing can be
effectively taken care of here. The price for this flexibility is performance. Still,
even with software-based address translation, performance was gained on all
MediaBench applications and half of the CPU2000 applications.

7.3 Comparison to Prior Art

We present three hardware-based techniques from prior work to compare Cool-
Mem against:

(1) Last cache line TAG buffer. Here the TAG corresponding to the last cache
line accessed is stored in the buffer/register. In case of a hit, direct access

ACM Transactions on Computer Systems, Vol. 22, No. 2, May 2004.



Coupling Compiler-Enabled and Conventional Memory Accessing • 207

to one of the cache ways is effected. In terms of energy-savings, this is
similar to a Hotline hit in the Cool-Mem r-r design. Since the last cache
line TAG-check is similar to a Hotline check, and can be performed in the
earlier pipeline stages, we have accounted for a 1-cycle saving on hits, and
no degradation on misses.

(2) Filter Cache. This is an implementation of the Filter Cache discussed in
Kin et al. [1997]. The Filter Cache parameters are the ones resulting in
best overall performance, as reported in Kin et al. [1997]: 256-byte, direct-
mapped, 32-byte line. On Filter Cache hits, energy-savings even greater
than those corresponding to Hotline hits in Cool-Mem are obtained due to
the small L0 cache size. The L0 access time is also lower than that for the
L1: we account for a 1-cycle performance gain on L0 hits.

(3) Hardware Way-Prediction. This is an implementation of the work pro-
posed in Inoue et al. [1999]. Here the last way accessed in each set is stored
in an array: on correct predictions, direct access to one of the cache-ways re-
sults in energy-savings comparable to that on Hotline hits in r-r Cool-Mem.

In the following paragraphs, we compare the three Cool-Mem designs with the
three aforementioned hardware-based schemes, on three metrics: performance,
energy-savings, and energy-delay product.

Figure 17(a) compares the performance gains of last cache line TAG buffer
(1TAG), Filter Cache (Filter), and Hardware Way-Prediction, with the three
Cool-Mem designs (r-r, v-r, v-v). 1TAG has minimal performance gain for all
the applications (due to low hit rate). However, no performance degradation is
observed for any of the applications (because misses have no overhead). Filter
Cache suffers from severe performance degradation due to very low L0 hits
rates (around 65–70%). Hardware Way-Prediction carries a 1-cycle overhead
on mispredictions (similar to TAG-Cache misses in Cool-Mem). However, due
to the very good hit rates, hardly any performance degradation is observed. The
three Cool-Mem designs do better than these hardware-based schemes across
the board.

Figure 17(b) compares the energy-savings. Due to the additional ITLB and
DTLB savings in Cool-Mem v-r and v-v designs, they again do better than all
the other schemes across the board. It is interesting to compare Cool-Mem r-r
(which doesn’t have any TLB energy savings) with the three hardware schemes.
Due to the lower hit-rates in 1TAG and Filter, they perform worse than r-r. How-
ever, Filter does better than all other schemes for the memory-bound applica-
tion mcf. Even with the not-as-good hit-rate as Cool-Mem, due to the extremely
small L0 size, the energy-savings are greater. Hardware way-prediction has
pretty good rates and does slightly worse or slightly better than r-r.

Figure 17(c) compares the energy-delay product (lower is better). Again, v-r
and v-v do better than the rest, across the board. Due to the lower energy-
savings in 1TAG, and much worse performance in Filter, these two schemes
have worse results compared to Cool-Mem r-r. Energy-wise Hardware Way-
Prediction performs on par with r-r, but doesn’t have the performance gain of
r-r (due to hotline hits in r-r): Cool-Mem r-r is the winner here for most of the
applications.
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Fig. 17. Comparison results.

In summary, we observe that Cool-Mem v-r and v-v designs do better than
the sampling of prior art we compared them against, for all the applica-
tions tested on. Even the Cool-Mem r-r design, which doesn’t have any ITLB/
DTLB energy-savings, does better, with only Hardware Way-Prediction coming
close.

8. ADDITIONAL DISCUSSION

Cool-Mem techniques can be used even in the case of CAM-Tag-based caches.
Many low-power embedded microprocessors, for example, ARM10, ARM11, and
XScale, implement CAM tags. ARM cores can also implement Ram-Tag-based
caches, especially when they are synthesized from soft-core versions. While
CAM-based caches serialize the tag access, they have the advantage of making

ACM Transactions on Computer Systems, Vol. 22, No. 2, May 2004.



Coupling Compiler-Enabled and Conventional Memory Accessing • 209

higher associativity and cache line locking easier to implement. Cam-Tagging
has been shown recently to result in a minimal penalty on cache access and
area [Zhang and Asanovic 2000] compared to Tag-Ram-based approaches, for
smaller size L1 caches (e.g., 2K to 16K). Typical embedded microprocessor
caches bank the cache such that each bank contains sets from all ways. Thus,
the size of the bank becomes a factor that determines/limits the associativity
of the design.

Cool-Mem techniques could be applied to determine which bank and way to
use in a CAM-Tagged cache. The Hotline registers would in that case contain
the way and bank information. The Cool-Mem compiler would pretty much be
unchanged. A memory operation that would access the cache through the hot-
lines path would have its cache match line directly enabled and would avoid
accessing the CAM-Tags. Thus, while the Cool-Mem techniques in a Ram-Tag
design save energy by removing Tag lookups and redundant associative data-
array accesses, in the case of CAM-Tag caches, the savings would be entirely
from eliminating Tag accesses. Note, however, that in CAM-Tag caches the
CAM access is the most significant energy component due to the highly asso-
ciative lookup and comparison that is implemented for each way in a cache CAM
bank. Depending on the size of the cache, the energy savings in removing a Tag
lookup, in a typical CAM-Tag cache, is around 65–75% [Zhang and Asanovic
2000].

Several circuit-level techniques are currently being proposed to address
leakage power in next-generation process technologies [Chandrakasan et al.
2000; Montanaro et al. 1997; Kao and Chandrakasan 2000; Kuroda et al. 1998;
Shigematsu 1997; Borkar et al. 1998; Mutoh et al. 1995; Kuroda and Sakurai
1996; Hu et al. 2002]. While leakage power is expected to be significant in future
deep-submicron technology nodes (especially if assuming current implementa-
tion approaches), we expect that circuit-level techniques will go a long way to
reduce it. Nevertheless, compiler-architecture-based leakage reduction could
be easily integrated into Cool-Mem, and we are currently pursuing research
in that direction. For example, in a CAM-based design one could use the bank
information to selectively precharge the accessed bank only, saving on the bit-
line energy. Furthermore, a miss in the Hotline registers could be used as an
indicator for when a cache line will likely not be requested anymore (i.e., due
to the fact that affine accesses in Hotlines could be assumed to access the cache
in a monotonic way), and used to move the old cache line into a low-leakage
state, saving cell leakage. Clearly, a leakage-aware cache cell design such as
the drowsy cache [Flautner et al. 2002] or VDD-gated [Powell et al. 2000] cache
is needed to enable it.

9. CONCLUSION

This article described Cool-Mem, a novel memory system architecture based
on tight integration between compiler and architecture that combines con-
ventional memory system mechanisms, selective address translation, with
compiler-enabled statically speculative memory accessing techniques to reduce
energy consumption in general-purpose architectures. The issues raised and
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solutions provided in this article leverage interlayer tradeoffs in memory
systems, clearly affecting architecture, compiler, and even operating system
layers. Cool-Mem achieves significant energy reduction in the processor, rang-
ing from 6% to 19%, with performance ranging from 1.5% degradation to 6%
improvement, by statically matching memory operations with energy-efficient
cache and virtual memory access mechanisms. Cool-Mem makes several con-
tributions: (1) it shows how to integrate statically speculative mechanisms in
general-purpose memory systems; (2) it describes a practical compiler frame-
work where static speculation can be controlled with different analysis and
required architectural support; (3) it successfully designs architectural backup
mechanisms to work together with compiler-enabled ones; and (4) it provides ar-
chitectural support for selective address translation including support in static
access paths. This paper also provides a detailed analysis of both compiler-level
and architectural design points, includes a number of sensitivity analyses to the
design parameters selected, that we believe will make it possible to incorporate
Cool-Mem in next-generation general-purpose microprocessors.

APPENDIX. ALGORITHM 1—HOTLINES ALGORITHM:
CONSERVATIVE AND OPTIMISTIC
/* For each routine, start with the first basic block */
for each routine do

E = entry basic block;
for all Hotline registers x: 1 to h do

hl access[x] = NULL;
end for
Hotline Annotate block E;

end for

/* procedure to Hotline Annotate a block X */
/**** The Conservative Hotlines Algorithm would skip through ****/
/**** pointer-based accesses and non-affine array accesses: ****/
for each access A in X do

distance = ∞;
/* find the closest previous access: */
for x from 1 to h do

if (proximity(A, hl access[x]) < distance) then
closest reg = x and update distance;

end if
end for
/* if accesses close enough, assign the same register */
if distance <= CacheLineSize/2 then

map A through hotline register closest reg;
hl access[closest reg] = A;
update the hotline register LRU list;

else
/* otherwise map through LRU hotline register */
map A through hotline register LRU reg;
hl access[LRU reg] = A;
update the hotline register LRU list;

end if
end for
workList = successors of X;
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while !empty(workList) do
B = next basic block in workList;
if B.annotated then

continue;
end if
/* Traverse through the CFG by making recursive calls */
Hotline Annotate B;
B.annotated = true;

end while

/* this procedure finds the proximity between two accesses x and y */
proximity(access x, y) {
if x and y are same array accesses with their indices constant c apart then

return c * element-size;
end if
if x and y are fields of the same structure variable then

return difference between field offsets;
end if
if x and y are scalar variables declared distance d apart in the same symbol-table then

return d;
end if
return∞;
}
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